13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Plasma Hypoxanthine-Guanine Phosphoribosyl Transferase Activity in Bottlenose Dolphins Contributes to Avoiding Accumulation of Non-recyclable Purines

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Marine mammals are exposed to ischemia/reperfusion and hypoxia/reoxygenation during diving. During oxygen deprivation, adenosine triphosphate (ATP) breakdown implies purine metabolite accumulation, which in humans is associated with pathological conditions. Purine recycling in seals increases in response to prolonged fasting and ischemia. Concentrations of metabolites and activities of key enzymes in purine metabolism were examined in plasma and red blood cells from bottlenose dolphins ( Tursiops truncatus) and humans. Hypoxanthine and inosine monophosphate concentrations were higher in plasma from dolphins than humans. Plasma hypoxanthine-guanine phosphoribosyl transferase (HGPRT) activity in dolphins suggests an elevated purine recycling rate, and a mechanism for avoiding accumulation of non-recyclable purines (xanthine and uric acid). Red blood cell concentrations of hypoxanthine, adenosine diphosphate, ATP and guanosine triphosphate were lower in dolphins than in humans; adenosine monophosphate and nicotinamide adenine dinucleotide concentrations were higher in dolphins. HGPRT activity in red blood cells was higher in humans than in dolphins. The lower concentrations of purine catabolism and recycling by-products in plasma from dolphins could be beneficial in providing substrates for recovery of ATP depleted during diving or vigorous swimming. These results suggest that purine salvage in dolphins could be a mechanism for delivering nucleotide precursors to tissues with high ATP and guanosine triphosphate requirements.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          Uric acid provides an antioxidant defense in humans against oxidant- and radical-caused aging and cancer: a hypothesis.

          During primate evolution, a major factor in lengthening life-span and decreasing age-specific cancer rates may have been improved protective mechanisms against oxygen radicals. We propose that one of these protective systems is plasma uric acid, the level of which increased markedly during primate evolution as a consequence of a series of mutations. Uric acid is a powerful antioxidant and is a scavenger of singlet oxygen and radicals. We show that, at physiological concentrations, urate reduces the oxo-heme oxidant formed by peroxide reaction with hemoglobin, protects erythrocyte ghosts against lipid peroxidation, and protects erythrocytes from peroxidative damage leading to lysis. Urate is about as effective an antioxidant as ascorbate in these experiments. Urate is much more easily oxidized than deoxynucleosides by singlet oxygen and is destroyed by hydroxyl radicals at a comparable rate. The plasma urate levels in humans (about 300 microM) is considerably higher than the ascorbate level, making it one of the major antioxidants in humans. Previous work on urate reported in the literature supports our experiments and interpretations, although the findings were not discussed in a physiological context.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The physiological basis of diving to depth: birds and mammals.

            There is wide diversity in the animals that dive to depth and in the distribution of their body oxygen stores. A hallmark of animals diving to depth is a substantial elevation of muscle myoglobin concentration. In deep divers, more than 80% of the oxygen store is in the blood and muscles. How these oxygen stores are managed, particularly within muscle, is unclear. The aerobic endurance of four species has now been measured. These measurements provide a standard for other species in which the limits cannot be measured. Diving to depth requires several adaptations to the effects of pressure. In mammals, one adaptation is lung collapse at shallow depths, which limits absorption of nitrogen. Blood N2 levels remain below the threshold for decompression sickness. No such adaptive model is known for birds. There appear to be two diving strategies used by animals that dive to depth. Seals, for example, seldom rely on anaerobic metabolism. Birds, on the other hand, frequently rely on anaerobic metabolism to exploit prey-rich depths otherwise unavailable to them.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Hypoxanthine-guanine phosophoribosyltransferase (HPRT) deficiency: Lesch-Nyhan syndrome

              Deficiency of hypoxanthine-guanine phosphoribosyltransferase (HPRT) activity is an inborn error of purine metabolism associated with uric acid overproduction and a continuum spectrum of neurological manifestations depending on the degree of the enzymatic deficiency. The prevalence is estimated at 1/380,000 live births in Canada, and 1/235,000 live births in Spain. Uric acid overproduction is present inall HPRT-deficient patients and is associated with lithiasis and gout. Neurological manifestations include severe action dystonia, choreoathetosis, ballismus, cognitive and attention deficit, and self-injurious behaviour. The most severe forms are known as Lesch-Nyhan syndrome (patients are normal at birth and diagnosis can be accomplished when psychomotor delay becomes apparent). Partial HPRT-deficient patients present these symptoms with a different intensity, and in the least severe forms symptoms may be unapparent. Megaloblastic anaemia is also associated with the disease. Inheritance of HPRT deficiency is X-linked recessive, thus males are generally affected and heterozygous female are carriers (usually asymptomatic). Human HPRT is encoded by a single structural gene on the long arm of the X chromosome at Xq26. To date, more than 300 disease-associated mutations in the HPRT1 gene have been identified. The diagnosis is based on clinical and biochemical findings (hyperuricemia and hyperuricosuria associated with psychomotor delay), and enzymatic (HPRT activity determination in haemolysate, intact erythrocytes or fibroblasts) and molecular tests. Molecular diagnosis allows faster and more accurate carrier and prenatal diagnosis. Prenatal diagnosis can be performed with amniotic cells obtained by amniocentesis at about 15–18 weeks' gestation, or chorionic villus cells obtained at about 10–12 weeks' gestation. Uric acid overproduction can be managed by allopurinol treatment. Doses must be carefully adjusted to avoid xanthine lithiasis. The lack of precise understanding of the neurological dysfunction has precluded development of useful therapies. Spasticity, when present, and dystonia can be managed with benzodiazepines and gamma-aminobutyric acid inhibitors such as baclofen. Physical rehabilitation, including management of dysarthria and dysphagia, special devices to enable hand control, appropriate walking aids, and a programme of posture management to prevent deformities are recommended. Self-injurious behaviour must be managed by a combination of physical restraints, behavioural and pharmaceutical treatments.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Physiol
                Front Physiol
                Front. Physiol.
                Frontiers in Physiology
                Frontiers Media S.A.
                1664-042X
                08 June 2016
                2016
                : 7
                : 213
                Affiliations
                [1] 1Programa de Planeación Ambiental y Conservación, Laboratorio de Estrés Oxidativo, Centro de Investigaciones Biológicas del Noroeste, S.C. La Paz, México
                [2] 2Department of Biology, Sonoma State University Rohnert Park, CA, USA
                [3] 3Instituto Mexicano del Seguro Social, Hospital General de Zona No. 1 La Paz, México
                [4] 4CaboDolphins Cabo San Lucas, Mexico
                Author notes

                Edited by: Andreas Fahlman, Texas A&M University–Corpus Christi, USA

                Reviewed by: Stephen J. Trumble, Baylor University, USA; Cory D. Champagne, National Marine Mammal Foundation, USA

                *Correspondence: Tania Zenteno-Savín tzenteno04@ 123456cibnor.mx

                This article was submitted to Aquatic Physiology, a section of the journal Frontiers in Physiology

                Article
                10.3389/fphys.2016.00213
                4898134
                27375492
                70ed03f5-8aa9-4578-8b8c-af6a10f8f7f1
                Copyright © 2016 López-Cruz, Crocker, Gaxiola-Robles, Bernal, Real-Valle, Lugo-Lugo and Zenteno-Savín.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 14 January 2016
                : 23 May 2016
                Page count
                Figures: 1, Tables: 3, Equations: 0, References: 41, Pages: 8, Words: 6117
                Funding
                Funded by: Consejo Nacional de Ciencia y Tecnología 10.13039/501100007350
                Award ID: SEP-CONACYT 152784
                Award ID: CONACYT
                Award ID: 270373
                Categories
                Physiology
                Original Research

                Anatomy & Physiology
                bottlenose dolphin,diving,hypoxia,ischemia,purine metabolism,purine salvage
                Anatomy & Physiology
                bottlenose dolphin, diving, hypoxia, ischemia, purine metabolism, purine salvage

                Comments

                Comment on this article