8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      What if LIGO’s gravitational wave detections are strongly lensed by massive galaxy clusters?

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2

          We describe the observation of GW170104, a gravitational-wave signal produced by the coalescence of a pair of stellar-mass black holes. The signal was measured on January 4, 2017 at 10:11:58.6 UTC by the twin advanced detectors of the Laser Interferometer Gravitational-Wave Observatory during their second observing run, with a network signal-to-noise ratio of 13 and a false alarm rate less than 1 in 70,000 years. The inferred component black hole masses are \(31.2^{+8.4}_{-6.0}\,M_\odot\) and \(19.4^{+5.3}_{-5.9}\,M_\odot\) (at the 90% credible level). The black hole spins are best constrained through measurement of the effective inspiral spin parameter, a mass-weighted combination of the spin components perpendicular to the orbital plane, \(\chi_\mathrm{eff} = -0.12^{+0.21}_{-0.30}.\) This result implies that spin configurations with both component spins positively aligned with the orbital angular momentum are disfavored. The source luminosity distance is \(880^{+450}_{-390}~\mathrm{Mpc}\) corresponding to a redshift of \(z = 0.18^{+0.08}_{-0.07}\). We constrain the magnitude of modifications to the gravitational-wave dispersion relation and perform null tests of general relativity. Assuming that gravitons are dispersed in vacuum like massive particles, we bound the graviton mass to \(m_g \le 7.7 \times 10^{-23}~\mathrm{eV}/c^2\). In all cases, we find that GW170104 is consistent with general relativity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Cosmic Star Formation History

            Over the past two decades, an avalanche of data from multiwavelength imaging and spectroscopic surveys has revolutionized our view of galaxy formation and evolution. Here we review the range of complementary techniques and theoretical tools that allow astronomers to map the cosmic history of star formation, heavy element production, and reionization of the Universe from the cosmic "dark ages" to the present epoch. A consistent picture is emerging, whereby the star-formation rate density peaked approximately 3.5 Gyr after the Big Bang, at z~1.9, and declined exponentially at later times, with an e-folding timescale of 3.9 Gyr. Half of the stellar mass observed today was formed before a redshift z = 1.3. About 25% formed before the peak of the cosmic star-formation rate density, and another 25% formed after z = 0.7. Less than ~1% of today's stars formed during the epoch of reionization. Under the assumption of a universal initial mass function, the global stellar mass density inferred at any epoch matches reasonably well the time integral of all the preceding star-formation activity. The comoving rates of star formation and central black hole accretion follow a similar rise and fall, offering evidence for co-evolution of black holes and their host galaxies. The rise of the mean metallicity of the Universe to about 0.001 solar by z = 6, one Gyr after the Big Bang, appears to have been accompanied by the production of fewer than ten hydrogen Lyman-continuum photons per baryon, a rather tight budget for cosmological reionization.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo

              We present a possible observing scenario for the Advanced LIGO and Advanced Virgo gravitational-wave detectors over the next decade, with the intention of providing information to the astronomy community to facilitate planning for multi-messenger astronomy with gravitational waves. We determine the expected sensitivity of the network to transient gravitational-wave signals, and study the capability of the network to determine the sky location of the source. We report our findings for gravitational-wave transients, with particular focus on gravitational-wave signals from the inspiral of binary neutron-star systems, which are considered the most promising for multi-messenger astronomy. The ability to localize the sources of the detected signals depends on the geographical distribution of the detectors and their relative sensitivity, and 90% credible regions can be as large as thousands of square degrees when only two sensitive detectors are operational. Determining the sky position of a significant fraction of detected signals to areas of 5 to 20 square degrees will require at least three detectors of sensitivity within a factor of ~2 of each other and with a broad frequency bandwidth. Should the third LIGO detector be relocated to India as expected, a significant fraction of gravitational-wave signals will be localized to a few square degrees by gravitational-wave observations alone.
                Bookmark

                Author and article information

                Journal
                Monthly Notices of the Royal Astronomical Society
                Oxford University Press (OUP)
                0035-8711
                1365-2966
                April 2018
                April 11 2018
                January 11 2018
                April 2018
                April 11 2018
                January 11 2018
                : 475
                : 3
                : 3823-3828
                Affiliations
                [1 ]School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT, UK
                [2 ]Centre for Extragalactic Astronomy, Department of Physics, Durham University, Durham DH1 3LE, UK
                [3 ]Institute for Computational Cosmology, Durham University, South Road, Durham DH1 3LE, UK
                [4 ]Astrophysics and Cosmology Research Unit, School of Mathematical Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
                [5 ]Laboratoire d’Astrophysique École Polytechnique Fédérale de Lausanne (EPFL), Observatoire de Sauverny, CH-1290 Versoix, Switzerland
                [6 ]School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, UK
                [7 ]Birmingham Institute of Gravitational Wave Astronomy, University of Birmingham, Birmingham B15 2TT, UK
                [8 ]Univ Lyon, Univ Lyon1, Ens de Lyon, CNRS, Centre de Recherche Astrophysique de Lyon UMR5574, F-69230, Saint-Genis-Laval, France
                Article
                10.1093/mnras/sty031
                71ba0024-708f-4738-9de1-4d8bfebfef8e
                © 2018
                History

                Comments

                Comment on this article