24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Metal Concentrations in e-Cigarette Liquid and Aerosol Samples: The Contribution of Metallic Coils

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background:

          Electronic cigarettes (e-cigarettes) generate an aerosol by heating a solution (e-liquid) with a metallic coil. Whether metals are transferred from the coil to the aerosol is unknown.

          Objective:

          Our goal was to investigate the transfer of metals from the heating coil to the e-liquid in the e-cigarette tank and the generated aerosol.

          Methods:

          We sampled 56 e-cigarette devices from daily e-cigarette users and obtained samples from the refilling dispenser, aerosol, and remaining e-liquid in the tank. Aerosol liquid was collected via deposition of aerosol droplets in a series of conical pipette tips. Metals were reported as mass fractions ( μ g / kg ) in liquids and converted to mass concentrations ( mg / m 3 ) for aerosols.

          Results:

          Median metal concentrations ( μ g / kg ) were higher in samples from the aerosol and tank vs. the dispenser (all p < 0.001 ): 16.3 and 31.2 vs. 10.9 for Al; 8.38 and 55.4 vs. < 0.5 for Cr; 68.4 and 233 vs. 2.03 for Ni; 14.8 and 40.2 vs. 0.476 for Pb; and 515 and 426 vs. 13.1 for Zn. Mn, Fe, Cu, Sb, and Sn were detectable in most samples. Cd was detected in 0.0, 30.4, and 55.1% of the dispenser, aerosol, and tank samples respectively. Arsenic was detected in 10.7% of dispenser samples (median 26.7 μ g / kg ) and these concentrations were similar in aerosol and tank samples. Aerosol mass concentrations ( mg / m 3 ) for the detected metals spanned several orders of magnitude and exceeded current health-based limits in close to 50% or more of the samples for Cr, Mn, Ni, and Pb.

          Conclusions:

          Our findings indicate that e-cigarettes are a potential source of exposure to toxic metals (Cr, Ni, and Pb), and to metals that are toxic when inhaled (Mn and Zn). Markedly higher concentrations in the aerosol and tank samples versus the dispenser demonstrate that coil contact induced e-liquid contamination. https://doi.org/10.1289/EHP2175

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Lead Exposure and Cardiovascular Disease—A Systematic Review

          Objective This systematic review evaluates the evidence on the association between lead exposure and cardiovascular end points in human populations. Methods We reviewed all observational studies from database searches and citations regarding lead and cardiovascular end points. Results A positive association of lead exposure with blood pressure has been identified in numerous studies in different settings, including prospective studies and in relatively homogeneous socioeconomic status groups. Several studies have identified a dose–response relationship. Although the magnitude of this association is modest, it may be underestimated by measurement error. The hypertensive effects of lead have been confirmed in experimental models. Beyond hypertension, studies in general populations have identified a positive association of lead exposure with clinical cardiovascular outcomes (cardiovascular, coronary heart disease, and stroke mortality; and peripheral arterial disease), but the number of studies is small. In some studies these associations were observed at blood lead levels < 5 μg/dL. Conclusions We conclude that the evidence is sufficient to infer a causal relationship of lead exposure with hypertension. We conclude that the evidence is suggestive but not sufficient to infer a causal relationship of lead exposure with clinical cardiovascular outcomes. There is also suggestive but insufficient evidence to infer a causal relationship of lead exposure with heart rate variability. Public Health Implications These findings have immediate public health implications. Current occupational safety standards for blood lead must be lowered and a criterion for screening elevated lead exposure needs to be established in adults. Risk assessment and economic analyses of lead exposure impact must include the cardiovascular effects of lead. Finally, regulatory and public health interventions must be developed and implemented to further prevent and reduce lead exposure.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Metal and Silicate Particles Including Nanoparticles Are Present in Electronic Cigarette Cartomizer Fluid and Aerosol

            Background Electronic cigarettes (EC) deliver aerosol by heating fluid containing nicotine. Cartomizer EC combine the fluid chamber and heating element in a single unit. Because EC do not burn tobacco, they may be safer than conventional cigarettes. Their use is rapidly increasing worldwide with little prior testing of their aerosol. Objectives We tested the hypothesis that EC aerosol contains metals derived from various components in EC. Methods Cartomizer contents and aerosols were analyzed using light and electron microscopy, cytotoxicity testing, x-ray microanalysis, particle counting, and inductively coupled plasma optical emission spectrometry. Results The filament, a nickel-chromium wire, was coupled to a thicker copper wire coated with silver. The silver coating was sometimes missing. Four tin solder joints attached the wires to each other and coupled the copper/silver wire to the air tube and mouthpiece. All cartomizers had evidence of use before packaging (burn spots on the fibers and electrophoretic movement of fluid in the fibers). Fibers in two cartomizers had green deposits that contained copper. Centrifugation of the fibers produced large pellets containing tin. Tin particles and tin whiskers were identified in cartridge fluid and outer fibers. Cartomizer fluid with tin particles was cytotoxic in assays using human pulmonary fibroblasts. The aerosol contained particles >1 µm comprised of tin, silver, iron, nickel, aluminum, and silicate and nanoparticles (<100 nm) of tin, chromium and nickel. The concentrations of nine of eleven elements in EC aerosol were higher than or equal to the corresponding concentrations in conventional cigarette smoke. Many of the elements identified in EC aerosol are known to cause respiratory distress and disease. Conclusions The presence of metal and silicate particles in cartomizer aerosol demonstrates the need for improved quality control in EC design and manufacture and studies on how EC aerosol impacts the health of users and bystanders.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Manganese Toxicity Upon Overexposure: a Decade in Review.

              Exposure to manganese (Mn) causes clinical signs and symptoms resembling, but not identical to, Parkinson's disease. Since our last review on this subject in 2004, the past decade has been a thriving period in the history of Mn research. This report provides a comprehensive review on new knowledge gained in the Mn research field. Emerging data suggest that beyond traditionally recognized occupational manganism, Mn exposures and the ensuing toxicities occur in a variety of environmental settings, nutritional sources, contaminated foods, infant formulas, and water, soil, and air with natural or man-made contaminations. Upon fast absorption into the body via oral and inhalation exposures, Mn has a relatively short half-life in blood, yet fairly long half-lives in tissues. Recent data suggest Mn accumulates substantially in bone, with a half-life of about 8-9 years expected in human bones. Mn toxicity has been associated with dopaminergic dysfunction by recent neurochemical analyses and synchrotron X-ray fluorescent imaging studies. Evidence from humans indicates that individual factors such as age, gender, ethnicity, genetics, and pre-existing medical conditions can have profound impacts on Mn toxicities. In addition to body fluid-based biomarkers, new approaches in searching biomarkers of Mn exposure include Mn levels in toenails, non-invasive measurement of Mn in bone, and functional alteration assessments. Comments and recommendations are also provided with regard to the diagnosis of Mn intoxication and clinical intervention. Finally, several hot and promising research areas in the next decade are discussed.
                Bookmark

                Author and article information

                Journal
                Environ Health Perspect
                Environ. Health Perspect
                EHP
                Environmental Health Perspectives
                Environmental Health Perspectives
                0091-6765
                1552-9924
                21 February 2018
                February 2018
                : 126
                : 2
                : 027010
                Affiliations
                [ 1 ]Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health , Baltimore, Maryland, USA
                [ 2 ]Department of Environmental Health Sciences, Columbia University Mailman School of Public Health , New York, New York, USA
                [ 3 ]Department of Legal Medicine and Toxicology, School of Medicine, University of Granada , Granada, Spain
                [ 4 ]Institute of Chemistry, University of Graz , Graz, Austria
                [ 5 ]Department of Health, Behavior and Society, Johns Hopkins Bloomberg School of Public Health , Baltimore, Maryland, USA
                [ 6 ]Institute of Global Tobacco Control, Johns Hopkins Bloomberg School of Public Health , Baltimore, Maryland, USA
                Author notes
                Address correspondence to P. Olmedo, Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St., Baltimore, MD 21205 USA. Telephone: 667-212-9916. Email: polmedo1@ 123456jhu.edu
                Article
                EHP2175
                10.1289/EHP2175
                6066345
                29467105
                7274ce42-2aca-4cea-86e9-5afd0f528905

                EHP is an open-access journal published with support from the National Institute of Environmental Health Sciences, National Institutes of Health. All content is public domain unless otherwise noted.

                History
                : 09 May 2017
                : 09 January 2018
                : 10 January 2018
                Categories
                Research

                Public health
                Public health

                Comments

                Comment on this article