78
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      External Influence of Early Childhood Establishment of Gut Microbiota and Subsequent Health Implications

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Postnatal maturation of immune regulation is largely driven by exposure to microbes. The gastrointestinal tract is the largest source of microbial exposure, as the human gut microbiome contains up to 10 14 bacteria, which is 10 times the number of cells in the human body. Several studies in recent years have shown differences in the composition of the gut microbiota in children who are exposed to different conditions before, during, and early after birth. A number of maternal factors are responsible for the establishment and colonization of gut microbiota in infants, such as the conditions surrounding the prenatal period, time and mode of delivery, diet, mother’s age, BMI, smoking status, household milieu, socioeconomic status, breastfeeding and antibiotic use, as well as other environmental factors that have profound effects on the microbiota and on immunoregulation during early life. Early exposures impacting the intestinal microbiota are associated with the development of childhood diseases that may persist to adulthood such as asthma, allergic disorders (atopic dermatitis, rhinitis), chronic immune-mediated inflammatory diseases, type 1 diabetes, obesity, and eczema. This overview highlights some of the exposures during the pre- and postnatal time periods that are key in the colonization and development of the gastrointestinal microbiota of infants as well as some of the diseases or disorders that occur due to the pattern of initial gut colonization.

          Related collections

          Most cited references60

          • Record: found
          • Abstract: found
          • Article: not found

          Exposure to environmental microorganisms and childhood asthma.

          Children who grow up in environments that afford them a wide range of microbial exposures, such as traditional farms, are protected from childhood asthma and atopy. In previous studies, markers of microbial exposure have been inversely related to these conditions. In two cross-sectional studies, we compared children living on farms with those in a reference group with respect to the prevalence of asthma and atopy and to the diversity of microbial exposure. In one study--PARSIFAL (Prevention of Allergy-Risk Factors for Sensitization in Children Related to Farming and Anthroposophic Lifestyle)--samples of mattress dust were screened for bacterial DNA with the use of single-strand conformation polymorphism (SSCP) analyses to detect environmental bacteria that cannot be measured by means of culture techniques. In the other study--GABRIELA (Multidisciplinary Study to Identify the Genetic and Environmental Causes of Asthma in the European Community [GABRIEL] Advanced Study)--samples of settled dust from children's rooms were evaluated for bacterial and fungal taxa with the use of culture techniques. In both studies, children who lived on farms had lower prevalences of asthma and atopy and were exposed to a greater variety of environmental microorganisms than the children in the reference group. In turn, diversity of microbial exposure was inversely related to the risk of asthma (odds ratio for PARSIFAL, 0.62; 95% confidence interval [CI], 0.44 to 0.89; odds ratio for GABRIELA, 0.86; 95% CI, 0.75 to 0.99). In addition, the presence of certain more circumscribed exposures was also inversely related to the risk of asthma; this included exposure to species in the fungal taxon eurotium (adjusted odds ratio, 0.37; 95% CI, 0.18 to 0.76) and to a variety of bacterial species, including Listeria monocytogenes, bacillus species, corynebacterium species, and others (adjusted odds ratio, 0.57; 95% CI, 0.38 to 0.86). Children living on farms were exposed to a wider range of microbes than were children in the reference group, and this exposure explains a substantial fraction of the inverse relation between asthma and growing up on a farm. (Funded by the Deutsche Forschungsgemeinschaft and the European Commission.).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Low gut microbiota diversity in early infancy precedes asthma at school age.

            Low total diversity of the gut microbiota during the first year of life is associated with allergic diseases in infancy, but little is known how early microbial diversity is related to allergic disease later in school age. To assess microbial diversity and characterize the dominant bacteria in stool during the first year of life in relation to the prevalence of different allergic diseases in school age, such as asthma, allergic rhinoconjunctivitis (ARC) and eczema. The microbial diversity and composition was analysed with barcoded 16S rDNA 454 pyrosequencing in stool samples at 1 week, 1 month and 12 months of age in 47 infants which were subsequently assessed for allergic disease and skin prick test reactivity at 7 years of age (ClinicalTrials.gov ID NCT01285830). Children developing asthma (n = 8) had a lower diversity of the total microbiota than non-asthmatic children at 1 week (P = 0.04) and 1 month (P = 0.003) of age, whereas allergic rhinoconjunctivitis (n = 13), eczema (n = 12) and positive skin prick reactivity (n = 14) at 7 years of age did not associate with the gut microbiota diversity. Neither was asthma associated with the microbiota composition later in infancy (at 12 months). Children having IgE-associated eczema in infancy and subsequently developing asthma had lower microbial diversity than those that did not. There were no significant differences, however, in relative abundance of bacterial phyla and genera between children with or without allergic disease. Low total diversity of the gut microbiota during the first month of life was associated with asthma but not ARC in children at 7 years of age. Measures affecting microbial colonization of the infant during the first month of life may impact asthma development in childhood. © 2013 John Wiley & Sons Ltd.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Low diversity of the gut microbiota in infants with atopic eczema.

              It is debated whether a low total diversity of the gut microbiota in early childhood is more important than an altered prevalence of particular bacterial species for the increasing incidence of allergic disease. The advent of powerful, cultivation-free molecular methods makes it possible to characterize the total microbiome down to the genus level in large cohorts. We sought to assess microbial diversity and characterize the dominant bacteria in stool during the first year of life in relation to atopic eczema development. Microbial diversity and composition were analyzed with barcoded 16S rDNA 454-pyrosequencing in stool samples at 1 week, 1 month, and 12 months of age in 20 infants with IgE-associated eczema and 20 infants without any allergic manifestation until 2 years of age (ClinicalTrials.gov ID NCT01285830). Infants with IgE-associated eczema had a lower diversity of the total microbiota at 1 month (P = .004) and a lower diversity of the bacterial phylum Bacteroidetes and the genus Bacteroides at 1 month (P = .02 and P = .01) and the phylum Proteobacteria at 12 months of age (P = .02). The microbiota was less uniform at 1 month than at 12 months of age, with a high interindividual variability. At 12 months, when the microbiota had stabilized, Proteobacteria, comprising gram-negative organisms, were more abundant in infants without allergic manifestation (Empirical Analysis of Digital Gene Expression in R [edgeR] test: P = .008, q = 0.02). Low intestinal microbial diversity during the first month of life was associated with subsequent atopic eczema. Copyright © 2011 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                URI : http://frontiersin.org/people/u/166382
                URI : http://frontiersin.org/people/u/186725
                URI : http://frontiersin.org/people/u/166362
                Journal
                Front Pediatr
                Front Pediatr
                Front. Pediatr.
                Frontiers in Pediatrics
                Frontiers Media S.A.
                2296-2360
                09 October 2014
                2014
                : 2
                : 109
                Affiliations
                [1] 1Section of Gastroenterology, Department of Immunology and Internal Medicine, University of Manitoba , Winnipeg, MB, Canada
                [2] 2Department of Animal Science, University of Manitoba , Winnipeg, MB, Canada
                [3] 3Department of Medical Microbiology and Infectious Diseases, University of Manitoba , Winnipeg, MB, Canada
                [4] 4Inflammatory Bowel Disease Clinical and Research Centre, University of Manitoba , Winnipeg, MB, Canada
                Author notes

                Edited by: Martin Gerbert Frasch, Université de Montréal, Canada

                Reviewed by: Alain Stintzi, Ottawa Institute of Systems Biology, Canada; Joern-Hendrik Weitkamp, Vanderbilt University, USA

                *Correspondence: Jean-Eric Ghia, University of Manitoba, 750 McDermot Avenue, Winnipeg, MB R3N 0T5, Canada e-mail: jeghia@ 123456med.umanitoba.ca , jeghia@ 123456yahoo.fr

                This article was submitted to Neonatology, a section of the journal Frontiers in Pediatrics.

                Article
                10.3389/fped.2014.00109
                4190989
                25346925
                72a764d8-45df-480b-97e0-aa74a57d7982
                Copyright © 2014 Munyaka, Khafipour and Ghia.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 27 June 2014
                : 23 September 2014
                Page count
                Figures: 0, Tables: 2, Equations: 0, References: 102, Pages: 9, Words: 8335
                Categories
                Pediatrics
                Review Article

                antibiotics,cesarean section,diet,gut microbiota,immunity,inflammatory diseases

                Comments

                Comment on this article