46
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mesenchymal stem cells: from experiment to clinic

      review-article
      1 , , 2
      Fibrogenesis & Tissue Repair
      BioMed Central

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          There is currently much interest in adult mesenchymal stem cells (MSCs) and their ability to differentiate into other cell types, and to partake in the anatomy and physiology of remote organs. It is now clear these cells may be purified from several organs in the body besides bone marrow. MSCs take part in wound healing by contributing to myofibroblast and possibly fibroblast populations, and may be involved in epithelial tissue regeneration in certain organs, although this remains more controversial. In this review, we examine the ability of MSCs to modulate liver, kidney, heart and intestinal repair, and we update their opposing qualities of being less immunogenic and therefore tolerated in a transplant situation, yet being able to contribute to xenograft models of human tumour formation in other contexts. However, such observations have not been replicated in the clinic. Recent studies showing the clinical safety of MSC in several pathologies are discussed. The possible opposing powers of MSC need careful understanding and control if their clinical potential is to be realised with long-term safety for patients.

          Related collections

          Most cited references108

          • Record: found
          • Abstract: found
          • Article: not found

          Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair--current views.

          Mesenchymal stem cells or multipotent stromal cells (MSCs) isolated from the bone marrow of adult organisms were initially characterized as plastic adherent, fibroblastoid cells with the capacity to generate heterotopic osseous tissue when transplanted in vivo. In recent years, MSCs or MSC-like cells have been shown to reside within the connective tissue of most organs, and their surface phenotype has been well described. A large number of reports have also indicated that the cells possess the capacity to transdifferentiate into epithelial cells and lineages derived from the neuroectoderm. The broad developmental plasticity of MSCs was originally thought to contribute to their demonstrated efficacy in a wide variety of experimental animal models of disease as well as in human clinical trials. However, new findings suggest that the ability of MSCs to alter the tissue microenvironment via secretion of soluble factors may contribute more significantly than their capacity for transdifferentiation in tissue repair. Herein, we critically evaluate the literature describing the plasticity of MSCs and offer insight into how the molecular and functional heterogeneity of this cell population, which reflects the complexity of marrow stroma as an organ system, may confound interpretation of their transdifferentiation potential. Additionally, we argue that this heterogeneity also provides a basis for the broad therapeutic efficacy of MSCs.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction.

            Our aim was to investigate the safety and efficacy of intravenous allogeneic human mesenchymal stem cells (hMSCs) in patients with myocardial infarction (MI). Bone marrow-derived hMSCs may ameliorate consequences of MI, and have the advantages of preparation ease, allogeneic use due to immunoprivilege, capacity to home to injured tissue, and extensive pre-clinical support. We performed a double-blind, placebo-controlled, dose-ranging (0.5, 1.6, and 5 million cells/kg) safety trial of intravenous allogeneic hMSCs (Prochymal, Osiris Therapeutics, Inc., Baltimore, Maryland) in reperfused MI patients (n=53). The primary end point was incidence of treatment-emergent adverse events within 6 months. Ejection fraction and left ventricular volumes determined by echocardiography and magnetic resonance imaging were exploratory efficacy end points. Adverse event rates were similar between the hMSC-treated (5.3 per patient) and placebo-treated (7.0 per patient) groups, and renal, hepatic, and hematologic laboratory indexes were not different. Ambulatory electrocardiogram monitoring demonstrated reduced ventricular tachycardia episodes (p=0.025), and pulmonary function testing demonstrated improved forced expiratory volume in 1 s (p=0.003) in the hMSC-treated patients. Global symptom score in all patients (p=0.027) and ejection fraction in the important subset of anterior MI patients were both significantly better in hMSCs versus placebo subjects. In the cardiac magnetic resonance imaging substudy, hMSC treatment, but not placebo, increased left ventricular ejection fraction and led to reverse remodeling. Intravenous allogeneic hMSCs are safe in patients after acute MI. This trial provides pivotal safety and provisional efficacy data for an allogeneic bone marrow-derived stem cell in post-infarction patients. (Safety Study of Adult Mesenchymal Stem Cells [MSC] to Treat Acute Myocardial Infarction; NCT00114452).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Fibroblast precursors in normal and irradiated mouse hematopoietic organs.

              Using the in vitro colony assay, clonogenic fibroblast precursor cells (CFU-F) were detected in the bone marrow, spleen and thymus from adult mice. The survival curve for CFU-F of mouse bone marrow irradiated in vitro has a D0 of 220 r. Regeneration of bone marrow CFU-F after whole-body irradiation with 150 r is characterized by a marked secondary loss and post-irradiation lag and dip, lasting 6 days, followed by return to normal values by about the 25th day. This pattern of post-radiation recovery of CFU-F is similar to that of the CFU-s. In addition, during the first 6 hours following irradiation the number of CFU-F increased approximately twofold.
                Bookmark

                Author and article information

                Journal
                Fibrogenesis Tissue Repair
                Fibrogenesis & Tissue Repair
                BioMed Central
                1755-1536
                2011
                8 September 2011
                : 4
                : 20
                Affiliations
                [1 ]Histopathology Laboratory, Cancer Research UK, London Research Institute, 44, Lincoln's Inn Fields, London WC2A 3LY, UK
                [2 ]Blizard Institute, Barts and The London, Queen Mary's School of Medicine and Dentistry, 4, Newark Street, London E1 2AT, UK
                Article
                1755-1536-4-20
                10.1186/1755-1536-4-20
                3182886
                21902837
                731a06fd-9847-4c27-9f48-172b8d9939fa
                Copyright ©2011 Otto and Wright; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 7 April 2011
                : 8 September 2011
                Categories
                Review

                Molecular biology
                Molecular biology

                Comments

                Comment on this article