2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The complete chloroplast genome sequence of the medicinal plant Sophora tonkinensis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Sophora tonkinensis belongs to genus Sophora of the Fabaceae family. It is mainly distributed in the ridge and peak regions of limestone areas in western China and has high medicinal value and important ecological functions. Wild populations of S. tonkinensis are in danger and need urgent conservation. Furthermore, wild S. tonkinensis resources are very limited relative to the needs of the market, and many adulterants are present on the market. Therefore, a method for authenticating S. tonkinensis and its adulterants at the molecular level is needed. Chloroplast genomes are valuable sources of genetic markers for phylogenetic analyses, genetic diversity evaluation, and plant molecular identification. In this study, we report the complete chloroplast genome of S. tonkinensis. The circular complete chloroplast genome was 154,644 bp in length, containing an 85,810 bp long single-copy (LSC) region, an 18,321 bp short single-copy (SSC) region and two inverted repeat (IR) regions of 50,513 bp. The S. tonkinensis chloroplast genome comprised 129 genes, including 83 protein-coding genes, 38 transfer RNA (tRNA) genes, and 8 ribosomal RNA (rRNA) genes. The structure, gene order and guanine and cytosine (GC) content of the S. tonkinensis chloroplast genome were similar to those of the Sophora alopecuroides and Sophora flavescens chloroplast genomes . A total of 1,760 simple sequence repeats (SSRs) were identified in the chloroplast genome of S. tonkinensis, and most of them (93.1%) were mononucleotides. Moreover, the identified SSRs were mainly distributed in the LSC region, accounting for 60% of the total number of SSRs, while 316 (18%) and 383 (22%) were located in the SSC and IR regions, respectively. Only one complete copy of the rpl2 gene was present at the LSC/IRB boundary, while another copy was absent from the IRA region because of the incomplete structure caused by IR region expansion and contraction. The phylogenetic analysis placed S. tonkinensis in Papilionoideae, sister to S. flavescens, and the genera Sophora and Ammopiptanthus were closely related. The complete genome sequencing and chloroplast genome comparative analysis of S. tonkinensis and its closely related species presented in this paper will help formulate effective conservation and management strategies as well as molecular identification approaches for this important medicinal plant.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Use of DNA barcodes to identify flowering plants.

          Methods for identifying species by using short orthologous DNA sequences, known as "DNA barcodes," have been proposed and initiated to facilitate biodiversity studies, identify juveniles, associate sexes, and enhance forensic analyses. The cytochrome c oxidase 1 sequence, which has been found to be widely applicable in animal barcoding, is not appropriate for most species of plants because of a much slower rate of cytochrome c oxidase 1 gene evolution in higher plants than in animals. We therefore propose the nuclear internal transcribed spacer region and the plastid trnH-psbA intergenic spacer as potentially usable DNA regions for applying barcoding to flowering plants. The internal transcribed spacer is the most commonly sequenced locus used in plant phylogenetic investigations at the species level and shows high levels of interspecific divergence. The trnH-psbA spacer, although short ( approximately 450-bp), is the most variable plastid region in angiosperms and is easily amplified across a broad range of land plants. Comparison of the total plastid genomes of tobacco and deadly nightshade enhanced with trials on widely divergent angiosperm taxa, including closely related species in seven plant families and a group of species sampled from a local flora encompassing 50 plant families (for a total of 99 species, 80 genera, and 53 families), suggest that the sequences in this pair of loci have the potential to discriminate among the largest number of plant species for barcoding purposes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Validation of the ITS2 Region as a Novel DNA Barcode for Identifying Medicinal Plant Species

            Background The plant working group of the Consortium for the Barcode of Life recommended the two-locus combination of rbcL + matK as the plant barcode, yet the combination was shown to successfully discriminate among 907 samples from 550 species at the species level with a probability of 72%. The group admits that the two-locus barcode is far from perfect due to the low identification rate, and the search is not over. Methodology/Principal Findings Here, we compared seven candidate DNA barcodes (psbA-trnH, matK, rbcL, rpoC1, ycf5, ITS2, and ITS) from medicinal plant species. Our ranking criteria included PCR amplification efficiency, differential intra- and inter-specific divergences, and the DNA barcoding gap. Our data suggest that the second internal transcribed spacer (ITS2) of nuclear ribosomal DNA represents the most suitable region for DNA barcoding applications. Furthermore, we tested the discrimination ability of ITS2 in more than 6600 plant samples belonging to 4800 species from 753 distinct genera and found that the rate of successful identification with the ITS2 was 92.7% at the species level. Conclusions The ITS2 region can be potentially used as a standard DNA barcode to identify medicinal plants and their closely related species. We also propose that ITS2 can serve as a novel universal barcode for the identification of a broader range of plant taxa.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Highly Variable Chloroplast Markers for Evaluating Plant Phylogeny at Low Taxonomic Levels and for DNA Barcoding

              Background At present, plant molecular systematics and DNA barcoding techniques rely heavily on the use of chloroplast gene sequences. Because of the relatively low evolutionary rates of chloroplast genes, there are very few choices suitable for molecular studies on angiosperms at low taxonomic levels, and for DNA barcoding of species. Methodology/Principal Findings We scanned the entire chloroplast genomes of 12 genera to search for highly variable regions. The sequence data of 9 genera were from GenBank and 3 genera were of our own. We identified nearly 5% of the most variable loci from all variable loci in the chloroplast genomes of each genus, and then selected 23 loci that were present in at least three genera. The 23 loci included 4 coding regions, 2 introns, and 17 intergenic spacers. Of the 23 loci, the most variable (in order from highest variability to lowest) were intergenic regions ycf1-a, trnK, rpl32-trnL, and trnH-psbA, followed by trnSUGA-trnGUCC , petA-psbJ, rps16-trnQ, ndhC-trnV, ycf1-b, ndhF, rpoB-trnC, psbE-petL, and rbcL-accD. Three loci, trnSUGA-trnGUCC , trnT-psbD, and trnW-psaJ, showed very high nucleotide diversity per site (π values) across three genera. Other loci may have strong potential for resolving phylogenetic and species identification problems at the species level. The loci accD-psaI, rbcL-accD, rpl32-trnL, rps16-trnQ, and ycf1 are absent from some genera. To amplify and sequence the highly variable loci identified in this study, we designed primers from their conserved flanking regions. We tested the applicability of the primers to amplify target sequences in eight species representing basal angiosperms, monocots, eudicots, rosids, and asterids, and confirmed that the primers amplified the desired sequences of these species. Significance/Conclusions Chloroplast genome sequences contain regions that are highly variable. Such regions are the first consideration when screening the suitable loci to resolve closely related species or genera in phylogenetic analyses, and for DNA barcoding.
                Bookmark

                Author and article information

                Contributors
                mjh1962@vip.163.com
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                27 July 2020
                27 July 2020
                2020
                : 10
                : 12473
                Affiliations
                [1 ]Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023 Guangxi China
                [2 ]ISNI 0000 0001 2254 5798, GRID grid.256609.e, Key Laboratory of Plant Genetics and Breeding, College of Agriculture, , Guangxi University, ; Nanning, 530005 Guangxi China
                Article
                69549
                10.1038/s41598-020-69549-z
                7385175
                32719421
                736a3b55-0296-457b-8fa9-4de778afcdb0
                © The Author(s) 2020

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 25 February 2019
                : 14 July 2020
                Funding
                Funded by: Guangxi Natural Science Foundation
                Award ID: 2018GXNSFBA294016
                Award ID: 2018GXNSFBA281050
                Funded by: Guangxi Innovation-Driven Development Project
                Award ID: GuiKe AA18242040
                Funded by: “Guangxi Bagui Scholars” and Research Innovation Team Project
                Award ID: GuiYaoChuang2019005
                Funded by: the National Public Welfare Special Project of China “Quality Guarantee system of Chinese herbal Medicines”
                Award ID: 201507002
                Categories
                Article
                Custom metadata
                © The Author(s) 2020

                Uncategorized
                dna sequencing,plant evolution
                Uncategorized
                dna sequencing, plant evolution

                Comments

                Comment on this article