0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Biocompatible 2D Materials via Liquid Phase Exfoliation

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          2D materials (2DMs), such as graphene, transition metal dichalcogenides (TMDs), and black phosphorus (BP), have been proposed for different types of bioapplications, owing to their unique physicochemical, electrical, optical, and mechanical properties. Liquid phase exfoliation (LPE), as one of the most effective up‐scalable and size‐controllable methods, is becoming the standard process to produce high quantities of various 2DM types as it can benefit from the use of green and biocompatible conditions. The resulting exfoliated layered materials have garnered significant attention because of their biocompatibility and their potential use in biomedicine as new multimodal therapeutics, antimicrobials, and biosensors. This review focuses on the production of LPE‐assisted 2DMs in aqueous solutions with or without the aid of surfactants, bioactive, or non‐natural molecules, providing insights into the possibilities of applications of such materials in the biological and biomedical fields.

          Related collections

          Most cited references131

          • Record: found
          • Abstract: found
          • Article: not found

          Electric Field Effect in Atomically Thin Carbon Films

          We describe monocrystalline graphitic films, which are a few atoms thick but are nonetheless stable under ambient conditions, metallic, and of remarkably high quality. The films are found to be a two-dimensional semimetal with a tiny overlap between valence and conductance bands, and they exhibit a strong ambipolar electric field effect such that electrons and holes in concentrations up to 10 13 per square centimeter and with room-temperature mobilities of ∼10,000 square centimeters per volt-second can be induced by applying gate voltage.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            The rise of graphene.

            Graphene is a rapidly rising star on the horizon of materials science and condensed-matter physics. This strictly two-dimensional material exhibits exceptionally high crystal and electronic quality, and, despite its short history, has already revealed a cornucopia of new physics and potential applications, which are briefly discussed here. Whereas one can be certain of the realness of applications only when commercial products appear, graphene no longer requires any further proof of its importance in terms of fundamental physics. Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena, some of which are unobservable in high-energy physics, can now be mimicked and tested in table-top experiments. More generally, graphene represents a conceptually new class of materials that are only one atom thick, and, on this basis, offers new inroads into low-dimensional physics that has never ceased to surprise and continues to provide a fertile ground for applications.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Two-dimensional nanosheets produced by liquid exfoliation of layered materials.

              If they could be easily exfoliated, layered materials would become a diverse source of two-dimensional crystals whose properties would be useful in applications ranging from electronics to energy storage. We show that layered compounds such as MoS(2), WS(2), MoSe(2), MoTe(2), TaSe(2), NbSe(2), NiTe(2), BN, and Bi(2)Te(3) can be efficiently dispersed in common solvents and can be deposited as individual flakes or formed into films. Electron microscopy strongly suggests that the material is exfoliated into individual layers. By blending this material with suspensions of other nanomaterials or polymer solutions, we can prepare hybrid dispersions or composites, which can be cast into films. We show that WS(2) and MoS(2) effectively reinforce polymers, whereas WS(2)/carbon nanotube hybrid films have high conductivity, leading to promising thermoelectric properties.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Advanced Materials
                Advanced Materials
                Wiley
                0935-9648
                1521-4095
                April 2024
                Affiliations
                [1 ] CNRS Immunology Immunopathology and Therapeutic Chemistry UPR 3572, University of Strasbourg, ISIS Strasbourg 67000 France
                Article
                10.1002/adma.202310999
                7376bc62-2cdf-4e75-85a7-2d07918619eb
                © 2024

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                History

                Comments

                Comment on this article