8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Recent Advancement of Medical Patch for Transdermal Drug Delivery

      , , ,
      Medicina
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Transdermal patches are a non-invasive method of drug administration. It is an adhesive patch designed to deliver a specific dose of medication through the skin and into the bloodstream throughout the body. Transdermal drug delivery has several advantages over other routes of administration, for instance, it is less invasive, patient-friendly, and has the ability to bypass first-pass metabolism and the destructive acidic environment of the stomach that occurs upon the oral ingestion of drugs. For decades, transdermal patches have attracted attention and were used to deliver drugs such as nicotine, fentanyl, nitroglycerin, and clonidine to treat various diseases or conditions. Recently, this method is also being explored as a means of delivering biologics in various applications. Here, we review the existing literatures on the design and usage of medical patches in transdermal drug delivery, with a focus on the recent advances in innovation and technology that led to the emergence of smart, dissolvable/biodegradable, and high-loading/release, as well as 3D-printed patches.

          Related collections

          Most cited references154

          • Record: found
          • Abstract: found
          • Article: not found

          Microneedles for drug and vaccine delivery.

          Microneedles were first conceptualized for drug delivery many decades ago, but only became the subject of significant research starting in the mid-1990's when microfabrication technology enabled their manufacture as (i) solid microneedles for skin pretreatment to increase skin permeability, (ii) microneedles coated with drug that dissolves off in the skin, (iii) polymer microneedles that encapsulate drug and fully dissolve in the skin and (iv) hollow microneedles for drug infusion into the skin. As shown in more than 350 papers now published in the field, microneedles have been used to deliver a broad range of different low molecular weight drugs, biotherapeutics and vaccines, including published human studies with a number of small-molecule and protein drugs and vaccines. Influenza vaccination using a hollow microneedle is in widespread clinical use and a number of solid microneedle products are sold for cosmetic purposes. In addition to applications in the skin, microneedles have also been adapted for delivery of bioactives into the eye and into cells. Successful application of microneedles depends on device function that facilitates microneedle insertion and possible infusion into skin, skin recovery after microneedle removal, and drug stability during manufacturing, storage and delivery, and on patient outcomes, including lack of pain, skin irritation and skin infection, in addition to drug efficacy and safety. Building off a strong technology base and multiple demonstrations of successful drug delivery, microneedles are poised to advance further into clinical practice to enable better pharmaceutical therapies, vaccination and other applications. Copyright © 2012 Elsevier B.V. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Testosterone Therapy in Men With Hypogonadism: An Endocrine Society Clinical Practice Guideline

            To update the "Testosterone Therapy in Men With Androgen Deficiency Syndromes" guideline published in 2010.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Dissolving Polymer Microneedle Patches for Influenza Vaccination

              Influenza prophylaxis would benefit from a vaccination method enabling simplified logistics and improved immunogenicity without the dangers posed by hypodermic needles. Here, we introduce dissolving microneedle patches for influenza vaccination using a simple patch-based system that targets delivery to skin’s antigen-presenting cells. Microneedles were fabricated using a biocompatible polymer encapsulating inactivated influenza virus vaccine for insertion and dissolution in the skin within minutes. Microneedle vaccination generated robust antibody and cellular immune responses in mice that provided complete protection against lethal challenge. Compared to conventional intramuscular injection, microneedle vaccination resulted in more efficient lung virus clearance and enhanced cellular recall responses after challenge. These results suggest that dissolving microneedle patches can provide a novel technology for simpler and safer vaccination with improved immunogenicity that could facilitate increased vaccination coverage.
                Bookmark

                Author and article information

                Contributors
                Journal
                Medicina
                Medicina
                MDPI AG
                1648-9144
                April 2023
                April 17 2023
                : 59
                : 4
                : 778
                Article
                10.3390/medicina59040778
                10142343
                37109736
                7379a021-755d-4218-90c9-171b87f808c3
                © 2023

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article