22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Isotropic three-dimensional gap in the iron-arsenide superconductor LiFeAs from directional heat transport measurements

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The thermal conductivity k of the iron-arsenide superconductor LiFeAs (Tc ~ 18K) was measured in single crystals at temperatures down to T~50mK and in magnetic fields up to H=17T, very close to the upper critical field Hc2~18T. For both directions of the heat current, parallel and perpendicular to the tetragonal c-axis, a negligible residual linear term k/T is found as T ->0, revealing that there are no zero-energy quasiparticles in the superconducting state. The increase in k with magnetic field is the same for both current directions and it follows closely the dependence expected for an isotropic superconducting gap. There is no evidence of multi-band character, whereby the gap would be different on different Fermi-surface sheets. These findings show that the superconducting gap in LiFeAs is isotropic in 3D, without nodes or deep minima anywhere on the Fermi surface. Comparison with other iron-pnictide superconductors suggests that a nodeless isotropic gap is a common feature at optimal doping (maximal Tc).

          Related collections

          Most cited references12

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Impurity-Induced Quasiparticle Transport and Universal Limit Wiedemann-Franz Violation in d-Wave Superconductors

          Due to the node structure of the gap in a d-wave superconductor, the presence of impurities generates a finite density of quasiparticle excitations at zero temperature. Since these impurity-induced quasiparticles are both generated and scattered by impurities, prior calculations indicate a universal limit (\Omega -> 0, T -> 0) where the transport coefficients obtain scattering-independent values, depending only on the velocity anisotropy v_f/v_2. We improve upon prior results, including the contributions of vertex corrections and Fermi liquid corrections in our calculations of universal limit electrical, thermal, and spin conductivity. We find that while vertex corrections modify electrical conductivity and Fermi liquid corrections renormalize both electrical and spin conductivity, only thermal conductivity maintains its universal value, independent of impurity scattering or Fermi liquid interactions. Hence, low temperature thermal conductivity measurements provide the most direct means of obtaining the velocity anisotropy for high T_c cuprate superconductors.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Heat Transport in a Strongly Overdoped Cuprate: Fermi Liquid and Pure d-wave BCS Superconductor

            The transport of heat and charge in the overdoped cuprate superconductor Tl_2Ba_2CuO_(6+delta) was measured down to low temperature. In the normal state, obtained by applying a magnetic field greater than the upper critical field, the Wiedemann-Franz law is verified to hold perfectly. In the superconducting state, a large residual linear term is observed in the thermal conductivity, in quantitative agreement with BCS theory for a d-wave superconductor. This is compelling evidence that the electrons in overdoped cuprates form a Fermi liquid, with no indication of spin-charge separation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Field-Induced Quantum Critical Point in CeCoIn5

              The resistivity of the heavy-fermion superconductor CeCoIn5 was measured as a function of temperature, down to 25 mK and in magnetic fields of up to 16 T applied perpendicular to the basal plane. With increasing field, we observe a suppression of the non-Fermi liquid behavior, rho ~ T, and the development of a Fermi liquid state, with its characteristic rho = rho_0 + AT^2 dependence. The field dependence of the T^2 coefficient shows critical behavior with an exponent of 1.37. This is evidence for a field-induced quantum critical point (QCP), occuring at a critical field which coincides, within experimental accuracy, with the superconducting critical field H_c2. We discuss the relation of this field-tuned QCP to a change in the magnetic state, seen as a change in magnetoresistance from positive to negative, at a crossover line that has a common border with the superconducting region below ~ 1 K.
                Bookmark

                Author and article information

                Journal
                12 April 2011
                2011-04-13
                Article
                10.1103/PhysRevB.84.054507
                1104.2209
                73eb5cc4-d329-476c-8a47-33d0a1a5c7f9

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                Phys. Rev. B 84, 054507 (2011)
                4 pages, 3 figures
                cond-mat.supr-con cond-mat.str-el

                Comments

                Comment on this article