0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Quantitative study on dose distribution of Freiburg flap for keloid high‐dose‐rate brachytherapy based on MatriXX

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose

          To quantify the dose distribution effect of insufficient scattering conditions in keloid HDR brachytherapy with Freiburg fFlap (FF) applicator.

          Materials and Methods

          A phantom composed of FF applicator, MatriXX and solid water slices was designed and scanned for treatment planning. Bolus with different thicknesses were covered to offer different scatter conditions. Planar dose distributions were measured by MatriXX. The maximum value (Max), average value (Avg) and γ passing rate (3 mm/3%) were evaluated by the software MyQA Platform.

          Results

          The maximum and average doses measured by MatriXX were lower than the calculated values. The difference increased as field size decreased. The Max value, found at 0.86 cm level in the two tube case, was ‐20.0%, and the avg value was ‐11.9%. All the γ values were less than 95%. This difference gradually decreased with increasing bolus thickness and the γ values were significantly improved.

          Conclusion

          MatriXX could be used for dose verification of HDR brachytherapy with an FF applicator. When the FF applicator was applied for keloid, insufficient scattering conditions would cause an insufficient target dose. This difference could be reduced by covering the bolus with different thicknesses on the applicator. The smaller the field, the thicker the bolus required.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          Update of AAPM Task Group No. 43 Report: A revised AAPM protocol for brachytherapy dose calculations.

          Since publication of the American Association of Physicists in Medicine (AAPM) Task Group No. 43 Report in 1995 (TG-43), both the utilization of permanent source implantation and the number of low-energy interstitial brachytherapy source models commercially available have dramatically increased. In addition, the National Institute of Standards and Technology has introduced a new primary standard of air-kerma strength, and the brachytherapy dosimetry literature has grown substantially, documenting both improved dosimetry methodologies and dosimetric characterization of particular source models. In response to these advances, the AAPM Low-energy Interstitial Brachytherapy Dosimetry subcommittee (LIBD) herein presents an update of the TG-43 protocol for calculation of dose-rate distributions around photon-emitting brachytherapy sources. The updated protocol (TG-43U1) includes (a) a revised definition of air-kerma strength; (b) elimination of apparent activity for specification of source strength; (c) elimination of the anisotropy constant in favor of the distance-dependent one-dimensional anisotropy function; (d) guidance on extrapolating tabulated TG-43 parameters to longer and shorter distances; and (e) correction for minor inconsistencies and omissions in the original protocol and its implementation. Among the corrections are consistent guidelines for use of point- and line-source geometry functions. In addition, this report recommends a unified approach to comparing reference dose distributions derived from different investigators to develop a single critically evaluated consensus dataset as well as guidelines for performing and describing future theoretical and experimental single-source dosimetry studies. Finally, the report includes consensus datasets, in the form of dose-rate constants, radial dose functions, and one-dimensional (1D) and two-dimensional (2D) anisotropy functions, for all low-energy brachytherapy source models that met the AAPM dosimetric prerequisites [Med. Phys. 25, 2269 (1998)] as of July 15, 2001. These include the following 125I sources: Amersham Health models 6702 and 6711, Best Medical model 2301, North American Scientific Inc. (NASI) model MED3631-A/M, Bebig/Theragenics model I25.S06, and the Imagyn Medical Technologies Inc. isostar model IS-12501. The 103Pd sources included are the Theragenics Corporation model 200 and NASI model MED3633. The AAPM recommends that the revised dose-calculation protocol and revised source-specific dose-rate distributions be adopted by all end users for clinical treatment planning of low energy brachytherapy interstitial sources. Depending upon the dose-calculation protocol and parameters currently used by individual physicists, adoption of this protocol may result in changes to patient dose calculations. These changes should be carefully evaluated and reviewed with the radiation oncologist preceding implementation of the current protocol.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Report of the Task Group 186 on model-based dose calculation methods in brachytherapy beyond the TG-43 formalism: current status and recommendations for clinical implementation.

            The charge of Task Group 186 (TG-186) is to provide guidance for early adopters of model-based dose calculation algorithms (MBDCAs) for brachytherapy (BT) dose calculations to ensure practice uniformity. Contrary to external beam radiotherapy, heterogeneity correction algorithms have only recently been made available to the BT community. Yet, BT dose calculation accuracy is highly dependent on scatter conditions and photoelectric effect cross-sections relative to water. In specific situations, differences between the current water-based BT dose calculation formalism (TG-43) and MBDCAs can lead to differences in calculated doses exceeding a factor of 10. MBDCAs raise three major issues that are not addressed by current guidance documents: (1) MBDCA calculated doses are sensitive to the dose specification medium, resulting in energy-dependent differences between dose calculated to water in a homogeneous water geometry (TG-43), dose calculated to the local medium in the heterogeneous medium, and the intermediate scenario of dose calculated to a small volume of water in the heterogeneous medium. (2) MBDCA doses are sensitive to voxel-by-voxel interaction cross sections. Neither conventional single-energy CT nor ICRU∕ICRP tissue composition compilations provide useful guidance for the task of assigning interaction cross sections to each voxel. (3) Since each patient-source-applicator combination is unique, having reference data for each possible combination to benchmark MBDCAs is an impractical strategy. Hence, a new commissioning process is required. TG-186 addresses in detail the above issues through the literature review and provides explicit recommendations based on the current state of knowledge. TG-43-based dose prescription and dose calculation remain in effect, with MBDCA dose reporting performed in parallel when available. In using MBDCAs, it is recommended that the radiation transport should be performed in the heterogeneous medium and, at minimum, the dose to the local medium be reported along with the TG-43 calculated doses. Assignments of voxel-by-voxel cross sections represent a particular challenge. Electron density information is readily extracted from CT imaging, but cannot be used to distinguish between different materials having the same density. Therefore, a recommendation is made to use a number of standardized materials to maintain uniformity across institutions. Sensitivity analysis shows that this recommendation offers increased accuracy over TG-43. MBDCA commissioning will share commonalities with current TG-43-based systems, but in addition there will be algorithm-specific tasks. Two levels of commissioning are recommended: reproducing TG-43 dose parameters and testing the advanced capabilities of MBDCAs. For validation of heterogeneity and scatter conditions, MBDCAs should mimic the 3D dose distributions from reference virtual geometries. Potential changes in BT dose prescriptions and MBDCA limitations are discussed. When data required for full MBDCA implementation are insufficient, interim recommendations are made and potential areas of research are identified. Application of TG-186 guidance should retain practice uniformity in transitioning from the TG-43 to the MBDCA approach.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Aspects of dosimetry and clinical practice of skin brachytherapy: The American Brachytherapy Society working group report.

              Nonmelanoma skin cancers (NMSCs) are the most common type of human malignancy. Although surgical techniques are the standard treatment, radiation therapy using photons, electrons, and brachytherapy (BT) (radionuclide-based and electronic) has been an important mode of treatment in specific clinical situations. The purpose of this work is to provide a clinical and dosimetric summary of the use of BT for the treatment of NMSC and to describe the different BT approaches used in treating cutaneous malignancies.
                Bookmark

                Author and article information

                Contributors
                szting110@163.com
                Journal
                J Appl Clin Med Phys
                J Appl Clin Med Phys
                10.1002/(ISSN)1526-9914
                ACM2
                Journal of Applied Clinical Medical Physics
                John Wiley and Sons Inc. (Hoboken )
                1526-9914
                18 August 2023
                September 2023
                : 24
                : 9 ( doiID: 10.1002/acm2.v24.9 )
                : e14118
                Affiliations
                [ 1 ] Radiation Therapy Center The First Affiliated Hospital of Soochow University Suzhou Jiangsu Province China
                Author notes
                [*] [* ] Correspondence

                Xiaoting Xu, Radiation Therapy Center, The First Affiliated Hospital of Soochow University, 899 Pinghai Street, Suzhou, Jiangsu Province, 215006, China.

                Email: szting110@ 123456163.com

                Author information
                https://orcid.org/0000-0003-2258-0096
                Article
                ACM214118
                10.1002/acm2.14118
                10476986
                37593834
                744c6718-80e1-4474-9c00-6fe8784b487d
                © 2023 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, LLC on behalf of The American Association of Physicists in Medicine.

                This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

                History
                : 18 April 2023
                : 17 August 2022
                : 25 July 2023
                Page count
                Figures: 4, Tables: 4, Pages: 7, Words: 3654
                Categories
                Radiation Measurements
                Radiation Measurements
                Custom metadata
                2.0
                September 2023
                Converter:WILEY_ML3GV2_TO_JATSPMC version:6.3.3 mode:remove_FC converted:04.09.2023

                dose verification,hdr brachytherapy,matrixx
                dose verification, hdr brachytherapy, matrixx

                Comments

                Comment on this article