240
views
0
recommends
+1 Recommend
0 collections
    11
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Although cancer arises from a combination of mutations in oncogenes and tumour suppressor genes, the extent to which tumour suppressor gene loss is required for maintaining established tumours is poorly understood. p53 is an important tumour suppressor that acts to restrict proliferation in response to DNA damage or deregulation of mitogenic oncogenes, by leading to the induction of various cell cycle checkpoints, apoptosis or cellular senescence. Consequently, p53 mutations increase cell proliferation and survival, and in some settings promote genomic instability and resistance to certain chemotherapies. To determine the consequences of reactivating the p53 pathway in tumours, we used RNA interference (RNAi) to conditionally regulate endogenous p53 expression in a mosaic mouse model of liver carcinoma. We show that even brief reactivation of endogenous p53 in p53-deficient tumours can produce complete tumour regressions. The primary response to p53 was not apoptosis, but instead involved the induction of a cellular senescence program that was associated with differentiation and the upregulation of inflammatory cytokines. This program, although producing only cell cycle arrest in vitro, also triggered an innate immune response that targeted the tumour cells in vivo, thereby contributing to tumour clearance. Our study indicates that p53 loss can be required for the maintenance of aggressive carcinomas, and illustrates how the cellular senescence program can act together with the innate immune system to potently limit tumour growth.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          Tumour biology: senescence in premalignant tumours.

          Oncogene-induced senescence is a cellular response that may be crucial for protection against cancer development, but its investigation has so far been restricted to cultured cells that have been manipulated to overexpress an oncogene. Here we analyse tumours initiated by an endogenous oncogene, ras, and show that senescent cells exist in premalignant tumours but not in malignant ones. Senescence is therefore a defining feature of premalignant tumours that could prove valuable in the diagnosis and prognosis of cancer.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            In vivo activation of the p53 pathway by small-molecule antagonists of MDM2.

            MDM2 binds the p53 tumor suppressor protein with high affinity and negatively modulates its transcriptional activity and stability. Overexpression of MDM2, found in many human tumors, effectively impairs p53 function. Inhibition of MDM2-p53 interaction can stabilize p53 and may offer a novel strategy for cancer therapy. Here, we identify potent and selective small-molecule antagonists of MDM2 and confirm their mode of action through the crystal structures of complexes. These compounds bind MDM2 in the p53-binding pocket and activate the p53 pathway in cancer cells, leading to cell cycle arrest, apoptosis, and growth inhibition of human tumor xenografts in nude mice.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Identification and validation of oncogenes in liver cancer using an integrative oncogenomic approach.

              The heterogeneity and instability of human tumors hamper straightforward identification of cancer-causing mutations through genomic approaches alone. Herein we describe a mouse model of liver cancer initiated from progenitor cells harboring defined cancer-predisposing lesions. Genome-wide analyses of tumors in this mouse model and in human hepatocellular carcinomas revealed a recurrent amplification at mouse chromosome 9qA1, the syntenic region of human chromosome 11q22. Gene-expression analyses delineated cIAP1, a known inhibitor of apoptosis, and Yap, a transcription factor, as candidate oncogenes in the amplicon. In the genetic context of their amplification, both cIAP1 and Yap accelerated tumorigenesis and were required to sustain rapid growth of amplicon-containing tumors. Furthermore, cIAP1 and Yap cooperated to promote tumorigenesis. Our results establish a tractable model of liver cancer, identify two oncogenes that cooperate by virtue of their coamplification in the same genomic locus, and suggest an efficient strategy for the annotation of human cancer genes.
                Bookmark

                Author and article information

                Journal
                Nature
                Nature
                Springer Science and Business Media LLC
                0028-0836
                1476-4687
                February 08 2007
                January 24 2007
                February 08 2007
                : 445
                : 7128
                : 656-660
                Article
                10.1038/nature05529
                4601097
                17251933
                7454acce-4c11-495f-8281-d042e4c71169
                © 2007

                http://www.springer.com/tdm

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article