11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Gene Selection and Evolutionary Modeling Affect Phylogenomic Inference of Neuropterida Based on Transcriptome Data

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Neuropterida is a super order of Holometabola that consists of the orders Megaloptera (dobsonflies, fishflies, and alderflies), Neuroptera (lacewings) and Raphidioptera (snakeflies). Several proposed higher-level relationships within Neuropterida, such as the relationships between the orders or between the families, have been extensively debated. To further understand the evolutionary history of Neuropterida, we conducted phylogenomic analyses of all 13 published transcriptomes of the neuropterid species, as well as of a new transcriptome of the fishfly species Ctenochauliodes similis of Liu and Yang, 2006 (Megaloptera: Corydalidae: Chauliodinae) that we sequenced. Our phylogenomic data matrix contained 1392 ortholog genes from 22 holometabolan species representing six families from Neuroptera, two families from Raphidioptera, and two families from Megaloptera as the ingroup taxa, and nine orders of Holometabola as outgroups. Phylogenetic reconstruction was performed using both concatenation and coalescent-based approaches under a site-homogeneous model as well as under a site-heterogeneous model. Surprisingly, analyses using the site-homogeneous model strongly supported a paraphyletic Neuroptera, with Coniopterygidae assigned as the sister group of all other Neuropterida. In contrast, analyses using the site-heterogeneous model recovered Neuroptera as monophyletic. The monophyly of Neuroptera was also recovered in concatenation and coalescent-based analyses using genes with stronger phylogenetic signals [i.e., higher average bootstrap support (ABS) values and higher relative tree certainty including all conflicting bipartitions (RTCA) values] under the site-homogeneous model. The present study illustrated how both data selection and model selection influence phylogenomic analyses of large-scale data matrices comprehensively.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          ASTRAL-II: coalescent-based species tree estimation with many hundreds of taxa and thousands of genes

          Motivation: The estimation of species phylogenies requires multiple loci, since different loci can have different trees due to incomplete lineage sorting, modeled by the multi-species coalescent model. We recently developed a coalescent-based method, ASTRAL, which is statistically consistent under the multi-species coalescent model and which is more accurate than other coalescent-based methods on the datasets we examined. ASTRAL runs in polynomial time, by constraining the search space using a set of allowed ‘bipartitions’. Despite the limitation to allowed bipartitions, ASTRAL is statistically consistent. Results: We present a new version of ASTRAL, which we call ASTRAL-II. We show that ASTRAL-II has substantial advantages over ASTRAL: it is faster, can analyze much larger datasets (up to 1000 species and 1000 genes) and has substantially better accuracy under some conditions. ASTRAL’s running time is O ( n 2 k | X | 2 ) , and ASTRAL-II’s running time is O ( n k | X | 2 ) , where n is the number of species, k is the number of loci and X is the set of allowed bipartitions for the search space. Availability and implementation: ASTRAL-II is available in open source at https://github.com/smirarab/ASTRAL and datasets used are available at http://www.cs.utexas.edu/~phylo/datasets/astral2/. Contact: smirarab@gmail.com Supplementary information: Supplementary data are available at Bioinformatics online.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Inferring ancient divergences requires genes with strong phylogenetic signals.

            To tackle incongruence, the topological conflict between different gene trees, phylogenomic studies couple concatenation with practices such as rogue taxon removal or the use of slowly evolving genes. Phylogenomic analysis of 1,070 orthologues from 23 yeast genomes identified 1,070 distinct gene trees, which were all incongruent with the phylogeny inferred from concatenation. Incongruence severity increased for shorter internodes located deeper in the phylogeny. Notably, whereas most practices had little or negative impact on the yeast phylogeny, the use of genes or internodes with high average internode support significantly improved the robustness of inference. We obtained similar results in analyses of vertebrate and metazoan phylogenomic data sets. These results question the exclusive reliance on concatenation and associated practices, and argue that selecting genes with strong phylogenetic signals and demonstrating the absence of significant incongruence are essential for accurately reconstructing ancient divergences.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mosquito genomics. Extensive introgression in a malaria vector species complex revealed by phylogenomics.

              Introgressive hybridization is now recognized as a widespread phenomenon, but its role in evolution remains contested. Here, we use newly available reference genome assemblies to investigate phylogenetic relationships and introgression in a medically important group of Afrotropical mosquito sibling species. We have identified the correct species branching order to resolve a contentious phylogeny and show that lineages leading to the principal vectors of human malaria were among the first to split. Pervasive autosomal introgression between these malaria vectors means that only a small fraction of the genome, mainly on the X chromosome, has not crossed species boundaries. Our results suggest that traits enhancing vectorial capacity may be gained through interspecific gene flow, including between nonsister species.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                01 March 2019
                March 2019
                : 20
                : 5
                : 1072
                Affiliations
                [1 ]College of Plant Protection, Hebei Agricultural University, Baoding 071001, China; wangyy_amy@ 123456126.com (Y.W.); wanglm1990@ 123456126.com (L.W.)
                [2 ]Department of Entomology, China Agricultural University, Beijing 100193, China
                [3 ]Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; zhouxiaofan1983@ 123456163.com
                [4 ]Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
                Author notes
                [†]

                These authors contributed equally to this work.

                Author information
                https://orcid.org/0000-0002-8645-303X
                https://orcid.org/0000-0002-2879-6317
                https://orcid.org/0000-0002-7248-6551
                Article
                ijms-20-01072
                10.3390/ijms20051072
                6429444
                30832228
                74897670-a4fc-4491-b1e2-22386b65a090
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 24 December 2018
                : 26 February 2019
                Categories
                Article

                Molecular biology
                transcriptome,phylogenomics,site-heterogeneous model,neuropterida
                Molecular biology
                transcriptome, phylogenomics, site-heterogeneous model, neuropterida

                Comments

                Comment on this article