12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Ouabain activates the Na-K-ATPase signalosome to induce autosomal dominant polycystic kidney disease cell proliferation.

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The Na-K-ATPase is part of a cell signaling complex, the Na-K-ATPase signalosome, which upon activation by the hormone ouabain regulates the function of different cell types. We previously showed that ouabain induces proliferation of epithelial cells derived from renal cysts of patients with autosomal dominant polycystic kidney disease (ADPKD cells). Here, we investigated the signaling pathways responsible for mediating the effects of ouabain in these cells. Incubation of ADPKD cells with ouabain, in concentrations similar to those found in blood, stimulated phosphorylation of the epidermal growth factor receptor (EGFR) and promoted its association to the Na-K-ATPase. In addition, ouabain activated the kinase Src, but not the related kinase Fyn. Tyrphostin AG1478 and PP2, inhibitors of EGFR and Src, respectively, blocked ouabain-dependent ADPKD cell proliferation. Treatment of ADPKD cells with ouabain also caused phosphorylation of the caveolar protein caveolin-1, and disruption of cell caveolae with methyl-β-cyclodextrin prevented Na-K-ATPase-EGFR interaction and ouabain-induced proliferation of the cells. Downstream effects of ouabain in ADPKD cells included activation of B-Raf and MEK and phosphorylation of the extracellular regulated kinase ERK, which translocated into the ADPKD cell nuclei. Finally, ouabain reduced expression of the cyclin-dependent kinase inhibitors p21 and p27, which are suppressors of cell proliferation. Different from ADPKD cells, ouabain showed no significant effect on B-Raf, p21, and p27 in normal human kidney epithelial cells. Altogether, these results identify intracellular pathways of ouabain-dependent Na-K-ATPase-mediated signaling in ADPKD cells, including EGFR-Src-B-Raf-MEK/ERK, and establish novel mechanisms involved in ADPKD cell proliferation.

          Related collections

          Author and article information

          Journal
          Am. J. Physiol. Renal Physiol.
          American journal of physiology. Renal physiology
          American Physiological Society
          1522-1466
          1522-1466
          Oct 2011
          : 301
          : 4
          Affiliations
          [1 ] Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, USA.
          Article
          ajprenal.00095.2011
          10.1152/ajprenal.00095.2011
          3191809
          21697238
          748ca8e9-9b12-4c9c-8b16-dbe2996b4dca
          History

          Comments

          Comment on this article