0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Driving chemical interactions at graphene-germanium van der Waals interfaces via thermal annealing

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The rise of graphene

          Graphene is a rapidly rising star on the horizon of materials science and condensed matter physics. This strictly two-dimensional material exhibits exceptionally high crystal and electronic quality and, despite its short history, has already revealed a cornucopia of new physics and potential applications, which are briefly discussed here. Whereas one can be certain of the realness of applications only when commercial products appear, graphene no longer requires any further proof of its importance in terms of fundamental physics. Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed matter physics, where quantum relativistic phenomena, some of which are unobservable in high energy physics, can now be mimicked and tested in table-top experiments. More generally, graphene represents a conceptually new class of materials that are only one atom thick and, on this basis, offers new inroads into low-dimensional physics that has never ceased to surprise and continues to provide a fertile ground for applications.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Control of graphene's properties by reversible hydrogenation

            Graphene - a monolayer of carbon atoms densely packed into a hexagonal lattice - has one of the strongest possible atomic bonds and can be viewed as a robust atomic-scale scaffold, to which other chemical species can be attached without destroying it. This notion of graphene as a giant flat molecule that can be altered chemically is supported by the observation of so-called graphene oxide, that is graphene densely covered with hydroxyl and other groups. Unfortunately, graphene oxide is strongly disordered, poorly conductive and difficult to reduce to the original state. Nevertheless, one can imagine atoms or molecules being attached to the atomic scaffold in a strictly periodic manner, which should result in a different electronic structure and, essentially, a different crystalline material. A hypothetical example for this is graphane, a wide-gap semiconductor, in which hydrogen is bonded to each carbon site of graphene. Here we show that by exposing graphene to atomic hydrogen, it is possible to transform this highly-conductive semimetal into an insulator. Transmission electron microscopy reveals that the material retains the hexagonal lattice but its period becomes markedly shorter than that of graphene, providing direct evidence for a new graphene-based derivative. The reaction with hydrogen is found to be reversible so that the original metallic state and lattice spacing are restored by annealing and even the quantum Hall effect recovers. Our work proves the concept of chemical modification of graphene, which promises a whole range of new two-dimensional crystals with designed electronic and other properties.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Bandgap opening in graphene induced by patterned hydrogen adsorption.

              Graphene, a single layer of graphite, has recently attracted considerable attention owing to its remarkable electronic and structural properties and its possible applications in many emerging areas such as graphene-based electronic devices. The charge carriers in graphene behave like massless Dirac fermions, and graphene shows ballistic charge transport, turning it into an ideal material for circuit fabrication. However, graphene lacks a bandgap around the Fermi level, which is the defining concept for semiconductor materials and essential for controlling the conductivity by electronic means. Theory predicts that a tunable bandgap may be engineered by periodic modulations of the graphene lattice, but experimental evidence for this is so far lacking. Here, we demonstrate the existence of a bandgap opening in graphene, induced by the patterned adsorption of atomic hydrogen onto the Moiré superlattice positions of graphene grown on an Ir(111) substrate.
                Bookmark

                Author and article information

                Journal
                Applied Physics Letters
                Appl. Phys. Lett.
                AIP Publishing
                0003-6951
                1077-3118
                November 19 2018
                November 19 2018
                : 113
                : 21
                : 213103
                Affiliations
                [1 ]Center for Nanoscale Materials, Argonne National Laboratory, 9700 South Cass Avenue, Building 440, Argonne, Illinois 60439, USA
                [2 ]Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208, USA
                [3 ]Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
                [4 ]Department of Chemistry, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208, USA
                Article
                10.1063/1.5053083
                74a9ac0f-3797-4284-8baf-87030be85bd0
                © 2018
                History

                Comments

                Comment on this article