31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Attending to Visual Stimuli versus Performing Visual Imagery as a Control Strategy for EEG-based Brain-Computer Interfaces

      research-article
      1 , , 2 , 2
      Scientific Reports
      Nature Publishing Group UK

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Currently the most common imagery task used in Brain-Computer Interfaces (BCIs) is motor imagery, asking a user to imagine moving a part of the body. This study investigates the possibility to build BCIs based on another kind of mental imagery, namely “visual imagery”. We study to what extent can we distinguish alternative mental processes of observing visual stimuli and imagining it to obtain EEG-based BCIs. Per trial, we instructed each of 26 users who participated in the study to observe a visual cue of one of two predefined images (a flower or a hammer) and then imagine the same cue, followed by rest. We investigated if we can differentiate between the different subtrial types from the EEG alone, as well as detect which image was shown in the trial. We obtained the following classifier performances: (i) visual imagery vs. visual observation task (71% of classification accuracy), (ii) visual observation task towards different visual stimuli (classifying one observation cue versus another observation cue with an accuracy of 61%) and (iii) resting vs. observation/imagery (77% of accuracy between imagery task versus resting state, and the accuracy of 75% between observation task versus resting state). Our results show that the presence of visual imagery and specifically related alpha power changes are useful to broaden the range of BCI control strategies.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          Different frequencies for different scales of cortical integration: from local gamma to long range alpha/theta synchronization.

          Cortical activity and perception are not driven by the external stimulus alone; rather sensory information has to be integrated with various other internal constraints such as expectations, recent memories, planned actions, etc. The question is how large scale integration over many remote and size-varying processes might be performed by the brain. We have conducted a series of EEG recordings during processes thought to involve neuronal assemblies of varying complexity. While local synchronization during visual processing evolved in the gamma frequency range, synchronization between neighboring temporal and parietal cortex during multimodal semantic processing evolved in a lower, the beta1 (12-18 Hz) frequency range, and long range fronto-parietal interactions during working memory retention and mental imagery evolved in the theta and alpha (4-8 Hz, 8-12 Hz) frequency range. Thus, a relationship seems to exist between the extent of functional integration and the synchronization-frequency. In particular, long-range interactions in the alpha and theta ranges seem specifically involved in processing of internal mental context, i.e. for top-down processing. We propose that large scale integration is performed by synchronization among neurons and neuronal assemblies evolving in different frequency ranges.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Statistical comparisons of classifiers over multiple data sets

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Oscillations in the alpha band (9-12 Hz) increase with memory load during retention in a short-term memory task.

              To study the role of brain oscillations in working memory, we recorded the scalp electroencephalogram (EEG) during the retention interval of a modified Sternberg task. A power spectral analysis of the EEG during the retention interval revealed a clear peak at 9-12 Hz, a frequency in the alpha band (8-13 Hz). In apparent conflict with previous ideas according to which alpha band oscillations represent brain "idling", we found that the alpha peak systematically increased with the number of items held in working memory. The enhancement was prominent over the posterior and bilateral central regions. The enhancement over posterior regions is most likely explained by the well known alpha rhythm produced close to the parietal-occipital fissure, whereas the lateral enhancement could be explained by sources in somato-motor cortex. A time-frequency analysis revealed that the enhancement was present throughout the last 2.5 s of the 2.8 s retention interval and that alpha power rapidly diminished following the probe. The load dependence and the tight temporal regulation of alpha provide strong evidence that the alpha generating system is directly or indirectly linked to the circuits responsible for working memory. Although a clear peak in the theta band (5-8 Hz) was only detectable in one subject, other lines of evidence indicate that theta occurs and also has a role in working memory. Hypotheses concerning the role of alpha band activity in working memory are discussed.
                Bookmark

                Author and article information

                Contributors
                nkosmyna@media.mit.edu
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                5 September 2018
                5 September 2018
                2018
                : 8
                : 13222
                Affiliations
                [1 ]ISNI 0000 0001 2341 2786, GRID grid.116068.8, MIT Media Lab, ; 75 Amherst St, Cambridge, MA 02139 USA
                [2 ]Inria Rennes, 263 Avenue General Leclerc, Rennes, 35042 France
                Author information
                http://orcid.org/0000-0003-1272-0470
                Article
                31472
                10.1038/s41598-018-31472-9
                6125597
                30185802
                74df57e9-ab48-4241-b2a4-a8c1f7ddbdd2
                © The Author(s) 2018

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 1 February 2018
                : 8 August 2018
                Categories
                Article
                Custom metadata
                © The Author(s) 2018

                Uncategorized
                Uncategorized

                Comments

                Comment on this article