22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mapping transmission foci to eliminate malaria in the People’s Republic of China, 2010–2015: a retrospective analysis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          China has initiated the National Malaria Elimination Action Plan, which aims to eliminate malaria by 2020. However, the transmission of malaria occurs sporadically or in distinct foci, which greatly hampers progress toward elimination in China and other countries. The object of this study was to foci categorization and evaluates whether the response met the requirements issued by the nation or WHO.

          Methods

          Residual transmissions were investigated and located with fine spatial resolution mapping from parasitological confirmed malaria cases by use of routine national surveillance data. The “1–3-7” timeframes were monitored for each focus between 2012 and 2015. Each focus was identified, and the application of appropriate measures was evaluated.

          Results

          A total of 5996 indigenous cases were recorded between 2010 and 2015; during this period, the number of cases declined by 99.1% (2010, n = 4262; 2015, n = 39). Most indigenous cases (92.5%) were reported in Anhui ( n = 2326), Yunnan ( n = 1373), Henan ( n = 930), Hubei ( n = 459), and Guizhou ( n = 458). The temporal distribution showed that the indigenous malaria cases were clustered during the period of May to August. A total of 320 foci were carefully investigated and analyzed: 24 were active foci; 72, residual non-active foci; and 224 cleared-up foci. For the foci response evaluation, all the active foci were investigated within 7 days, while 80.2% of the residual non-active foci were responded within 7 days. In addition, reactive case detection (RACD) was carried out with 92.9% of the active foci and vector investigation carried out with 75%. For residual non-active foci, RACD was carried out with 83.2% and vector investigation with 78.2% of the foci.

          Conclusions

          This study used nationwide data to categorize foci in China and evaluate the response of these areas during the control and elimination phases. Our approach stratifies future control responses by identifying those locations where the elimination of endemic transmission is needed, such as in the counties at the China–Myanmar border and in Tibet. In addition, this study will help local CDC staff to reassess their needs and responses against different types of foci during the elimination and post-elimination phases.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          Identification of hot spots of malaria transmission for targeted malaria control.

          Variation in the risk of malaria within populations is a frequently described but poorly understood phenomenon. This heterogeneity creates opportunities for targeted interventions but only if hot spots of malaria transmission can be easily identified. We determined spatial patterns in malaria transmission in a district in northeastern Tanzania, using malaria incidence data from a cohort study involving infants and household-level mosquito sampling data. The parasite prevalence rates and age-specific seroconversion rates (SCRs) of antibodies against Plasmodium falciparum antigens were determined in samples obtained from people attending health care facilities. Five clusters of higher malaria incidence were detected and interpreted as hot spots of transmission. These hot spots partially overlapped with clusters of higher mosquito exposure but could not be satisfactorily predicted by a probability model based on environmental factors. Small-scale local variation in malaria exposure was detected by parasite prevalence rates and SCR estimates for samples of health care facility attendees. SCR estimates were strongly associated with local malaria incidence rates and predicted hot spots of malaria transmission with 95% sensitivity and 85% specificity. Serological markers were able to detect spatial variation in malaria transmission at the microepidemiological level, and they have the potential to form an effective method for spatial targeting of malaria control efforts.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Communicating and Monitoring Surveillance and Response Activities for Malaria Elimination: China's “1-3-7” Strategy

            Qi Gao and colleagues describe China's 1-3-7 strategy for eliminating malaria: reporting of malaria cases within one day, their confirmation and investigation within three days, and the appropriate public health response to prevent further transmission within seven days.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              China’s 1-3-7 surveillance and response strategy for malaria elimination: Is case reporting, investigation and foci response happening according to plan?

              Background The China’s 1-3-7 strategy was initiated and extensively adopted in different types of counties (geographic regions) for reporting of malaria cases within 1 day, their confirmation and investigation within 3 days, and the appropriate public health response to prevent further transmission within 7 days. Assessing the level of compliance to the 1-3-7 strategy at the county level is a first step towards determining whether the surveillance and response strategy is happening according to plan. This study assessed if the time-bound targets of the 1-3-7 strategy were being sustained over time. Such information would be useful to improve implementation of the 1-3-7 strategy in China. Methods This cross-sectional study involved country-wide programmatic data for the period January 1st 2013 to June 30th 2014. Data variables were extracted from the national malaria information system and included socio-demographic information, type of county, date of diagnosis, date of reporting, date of case investigation, case classification (indigenous, or imported, or unknown), focus investigation, date of reactive case detection (RACD), and date of indoor residual spraying (IRS). Summary statistics and proportions were used and comparisons between groups were assessed using the chi-square test. Level of significance was set at a P-value ≤ 0.05. Results Of a total of 5,688 malaria cases from 731 counties, there were 55 (1 %) indigenous cases (only in Type 1 and Type 2 counties) and 5,633 (99 %) imported cases from all types of counties. There was no delay in reporting malaria cases by type of county. In terms of case investigation, 97.5 % cases were investigated within 3 days with the proportion of delays (1.5 %) in type 2 counties, being significantly lower than type 1 counties (4.1 %). Regarding active foci, 96.4 % were treated by RACD and/or IRS. Conclusions The performance of 1-3-7 strategy was encouraging but identified some challenges that if addressed can further improve implementation. Electronic supplementary material The online version of this article (doi:10.1186/s40249-015-0089-2) contains supplementary material, which is available to authorized users.
                Bookmark

                Author and article information

                Contributors
                fjphilip1983@hotmail.com
                tuhong372@163.com
                zhangli7481@163.com
                shaosen413@163.com
                lyg_jiangshan@163.com
                nipdxzhg@163.com
                shuisenzhou@126.com , zss163@hotmail.com
                Journal
                BMC Infect Dis
                BMC Infect. Dis
                BMC Infectious Diseases
                BioMed Central (London )
                1471-2334
                7 March 2018
                7 March 2018
                2018
                : 18
                : 115
                Affiliations
                National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; Key Laboratory of Parasite and Vector Biology, Ministry of Health; WHO Collaborating Centre for Tropical Diseases; National Center for International Research on Tropical Diseases, Shanghai, 200025 People’s Republic of China
                Article
                3018
                10.1186/s12879-018-3018-8
                5840925
                29514598
                7567bc44-24d7-46c8-a031-babcd84cd4a1
                © The Author(s). 2018

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 15 May 2017
                : 28 February 2018
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100001809, National Natural Science Foundation of China;
                Award ID: 81602904
                Award Recipient :
                Categories
                Research Article
                Custom metadata
                © The Author(s) 2018

                Infectious disease & Microbiology
                malaria elimination,foci,china
                Infectious disease & Microbiology
                malaria elimination, foci, china

                Comments

                Comment on this article