10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Immune Responses to AAV-Vectors, the Glybera Example from Bench to Bedside

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Alipogene tiparvovec (Glybera ®) is an adeno-associated virus serotype 1 (AAV1)-based gene therapy that has been developed for the treatment of patients with lipoprotein lipase (LPL) deficiency. Alipogene tiparvovec contains the human LPL naturally occurring gene variant LPL S447X in a non-replicating viral vector based on AAV1. Such virus-derived vectors administered to humans elicit immune responses against the viral capsid protein and immune responses, especially cellular, mounted against the protein expressed from the administered gene have been linked to attenuated transgene expression and loss of efficacy. Therefore, a potential concern about the use of AAV-based vectors for gene therapy is that they may induce humoral and cellular immune responses in the recipient that may impact on efficacy and safety. In this paper, we review the current understanding of immune responses against AAV-based vectors and their impact on clinical efficacy and safety. In particular, the immunogenicity findings from the clinical development of alipogene tiparvovec up to licensing in Europe will be discussed demonstrating that systemic and local immune responses induced by intra-muscular injection of alipogene tiparvovec have no deleterious effects on clinical efficacy and safety. These findings show that muscle-directed AAV-based gene therapy remains a promising approach for the treatment of human diseases.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Novel adeno-associated viruses from rhesus monkeys as vectors for human gene therapy.

          Tissues from rhesus monkeys were screened by PCR for the presence of sequences homologous to known adeno-associated virus (AAV) serotypes 1-6. DNA spanning entire rep-cap ORFs from two novel AAVs, called AAV7 and AAV8, were isolated. Sequence comparisons among these and previously described AAVs revealed the greatest divergence in capsid proteins. AAV7 and AAV8 were not neutralized by heterologous antisera raised to the other serotypes. Neutralizing antibodies to AAV7 and AAV8 were rare in human serum and, when present, were low in activity. Vectors formed with capsids from AAV7 and AAV8 were generated by using rep and inverted terminal repeats (ITRs) from AAV2 and were compared with similarly constructed vectors made from capsids of AAV1, AAV2, and AAV5. Murine models of skeletal muscle and liver-directed gene transfer were used to evaluate relative vector performance. AAV7 vectors demonstrated efficiencies of transgene expression in skeletal muscle equivalent to that observed with AAV1, the most efficient known serotype for this application. In liver, transgene expression was 10- to 100-fold higher with AAV8 than observed with other serotypes. This improved efficiency correlated with increased persistence of vector DNA and higher number of transduced hepatocytes. The efficiency of AAV8 vector for liver-directed gene transfer of factor IX was not impacted by preimmunization with the other AAV serotypes. Vectors based on these novel, nonhuman primate AAVs should be considered for human gene therapy because of low reactivity to antibodies directed to human AAVs and because gene transfer efficiency in muscle was similar to that obtained with the best known serotype, whereas, in liver, gene transfer was substantially higher than previously described.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Safety and tolerability of gene therapy with an adeno-associated virus (AAV) borne GAD gene for Parkinson's disease: an open label, phase I trial.

            Dopaminergic neuronal loss in Parkinson's disease leads to changes in the circuitry of the basal ganglia, such as decreased inhibitory GABAergic input to the subthalamic nucleus. We aimed to measure the safety, tolerability, and potential efficacy of transfer of glutamic acid decarboxylase (GAD) gene with adeno-associated virus (AAV) into the subthalamic nucleus of patients with Parkinson's disease. We did an open label, safety and tolerability trial of unilateral subthalamic viral vector (AAV-GAD) injection in 11 men and 1 woman with Parkinson's disease (mean age 58.2, SD=5.7 years). Four patients received low-dose, four medium-dose, and four high-dose AAV-GAD at New York Presbyterian Hospital. Inclusion criteria consisted of Hoehn and Yahr stage 3 or greater, motor fluctuations with substantial off time, and age 70 years or less. Patients were assessed clinically both off and on medication at baseline and after 1, 3, 6, and 12 months at North Shore Hospital. Efficacy measures included the Unified Parkinson's Disease Rating Scale (UPDRS), scales of activities of daily living (ADL), neuropsychological testing, and PET imaging with 18F-fluorodeoxyglucose. The trial is registered with the ClinicalTrials.gov registry, number NCT00195143. All patients who enrolled had surgery, and there were no dropouts or patients lost to follow-up. There were no adverse events related to gene therapy. Significant improvements in motor UPDRS scores (p=0.0015), predominantly on the side of the body that was contralateral to surgery, were seen 3 months after gene therapy and persisted up to 12 months. PET scans revealed a substantial reduction in thalamic metabolism that was restricted to the treated hemisphere, and a correlation between clinical motor scores and brain metabolism in the supplementary motor area. AAV-GAD gene therapy of the subthalamic nucleus is safe and well tolerated by patients with advanced Parkinson's disease, suggesting that in-vivo gene therapy in the adult brain might be safe for various neurodegenerative diseases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Extrachromosomal recombinant adeno-associated virus vector genomes are primarily responsible for stable liver transduction in vivo.

              Recombinant adeno-associated virus (rAAV) vectors stably transduce hepatocytes in experimental animals. Although the vector genomes are found both as extrachromosomes and as chromosomally integrated forms in hepatocytes, the relative proportion of each has not yet been clearly established. Using an in vivo assay based on the induction of hepatocellular regeneration via a surgical two-thirds partial hepatectomy, we have determined the proportion of integrated and extrachromosomal rAAV genomes in mouse livers and their relative contribution to stable gene expression in vivo. Plasma human coagulation factor IX (hF.IX) levels in mice originating from a chromosomally integrated hF.IX-expressing transposon vector remained unchanged with hepatectomy. This was in sharp contrast to what was observed when a surgical partial hepatectomy was performed in mice 6 weeks to 12 months after portal vein injection of a series of hF.IX-expressing rAAV vectors. At doses of 2.4 x 10(11) to 3.0 x 10(11) vector genomes per mouse (n = 12), hF.IX levels and the average number of stably transduced vector genomes per cell decreased by 92 and 86%, respectively, after hepatectomy. In a separate study, one of three mice injected with a higher dose of rAAV had a higher proportion (67%) of integrated genomes, the significance of which is not known. Nevertheless, in general, these results indicate that, in most cases, no more than approximately 10% of stably transduced genomes integrated into host chromosomes in vivo. Additionally, the results demonstrate that extrachromosomal, not integrated, genomes are the major form of rAAV in the liver and are the primary source of rAAV-mediated gene expression. This small fraction of integrated genomes greatly decreases the potential risk of vector-related insertional mutagenesis associated with all integrating vectors but also raises uncertainties as to whether rAAV-mediated hepatic gene expression can persist lifelong after a single vector administration.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Immunol
                Front Immunol
                Front. Immunol.
                Frontiers in Immunology
                Frontiers Media S.A.
                1664-3224
                03 March 2014
                2014
                : 5
                : 82
                Affiliations
                [1] 1Research and Development, uniQure B.V. , Amsterdam, Netherlands
                Author notes

                Edited by: Federico Mingozzi, Université Pierre et Marie Curie, France; Genethon, France

                Reviewed by: Zejing Wang, Fred Hutchinson Cancer Research Center, USA; Roland W. Herzog, University of Florida, USA; Louise R. Rodino-Klapac, The Research Institute at Nationwide Children’s Hospital, USA

                *Correspondence: Valerie Ferreira, uniQure B.V., Meibergdreef 61, Amsterdam 1105 BA, Netherlands e-mail: v.sier-ferreira@ 123456uniqure.com

                This article was submitted to Microbial Immunology, a section of the journal Frontiers in Immunology.

                Article
                10.3389/fimmu.2014.00082
                3939780
                24624131
                75845ef1-3000-4dae-a123-30eba14ec771
                Copyright © 2014 Ferreira, Petry and Salmon.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 09 September 2013
                : 16 February 2014
                Page count
                Figures: 7, Tables: 0, Equations: 0, References: 59, Pages: 15, Words: 10512
                Categories
                Immunology
                Clinical Trial

                Immunology
                adeno-associated viral vectors,gene therapy,alipogene tiparvovec,immune responses,clinical safety,clinical efficacy

                Comments

                Comment on this article