7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Fleece variation in alpaca ( Vicugna pacos): a two-locus model for the Suri/Huacaya phenotype

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Genetic improvement of fibre-producing animal species has often induced transition from double coated to single coated fleece, accompanied by dramatic changes in skin follicles and hair composition, likely implying variation at multiple loci. Huacaya, the more common fleece phenotype in alpaca ( Vicugna pacos), is characterized by a thick dense coat growing perpendicularly from the body, whereas the alternative rare and more prized single-coated Suri phenotype is distinguished by long silky fibre that grows parallel to the body and hangs in separate, distinctive pencil locks. A single-locus genetic model has been proposed for the Suri-Huacaya phenotype, where Huacaya is recessive.

          Results

          Two reciprocal experimental test-crosses (Suri × Huacaya) were carried out, involving a total of 17 unrelated males and 149 unrelated females. An additional dataset of 587 offspring of Suri × Suri crosses was analyzed. Segregation ratios, population genotype frequencies, and/or recombination fraction under different genetic models were estimated by maximum likelihood. The single locus model for the Suri/Huacaya phenotype was rejected. In addition, we present two unexpected observations: 1) a large proportion (about 3/4) of the Suri animals are segregating (with at least one Huacaya offspring), even in breeding conditions where the Huacaya trait would have been almost eliminated; 2) a model with two different values of the segregation ratio fit the data significantly better than a model with a single parameter.

          Conclusions

          The data support a genetic model in which two linked loci must simultaneously be homozygous for recessive alleles in order to produce the Huacaya phenotype. The estimated recombination rate between these loci was 0.099 (95% C.L. = 0.029-0.204). Our genetic analysis may be useful for other species whose breeding system produces mainly half-sib families.

          Related collections

          Most cited references6

          • Record: found
          • Abstract: found
          • Article: not found

          Biology of the wool follicle: an excursion into a unique tissue interaction system waiting to be re-discovered.

          Wool fibres are hairs and the term 'wool' is usually restricted to describe the fine curly hairs that constitute the fleece produced by sheep. In a broader sense, it can be used to describe the fleeces produced by related species such as goat or yak. Research into the biology of wool growth and the structure of the wool fibre has been driven by the demands of the wool industry to improve both the efficiency of growing wool and the quality of the product. Well beyond this very applied perspective however, the wool follicle is a unique basic research model for the life sciences in general. These unique features include, to name just a few selected examples, accessibility for studying the molecular controls involved in branching of secondary epithelial-mesenchymal structures, the photoperiod-dependence of regenerating tissue interaction systems, the origin of fibre curliness and follicle wave pattern formation, and the effect of alterations in nutrient supply on epithelial growth and fibre structure. In this review, investigation of growth processes in the formation of the wool fibre is broadly surveyed. The relevance and potential for practical outcomes through characterization of wool follicle genes are discussed and particular features of the wool follicle contributing to our knowledge of the biology of hair growth are highlighted. The practical potential of gene discovery in wool research is the provision of molecular markers for selective breeding and for altering wool growth and wool structure by other biological pathways such as sheep transgenesis that could lead to novel wool properties. In this background, the current review attempts to revive general interest in the fascinating biology of the wool follicle which is not only of profound economic and practical importance but offers an exquisite, highly instructive research model for addressing key questions of modern biology.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Major genes and QTL influencing wool production and quality: a review

            The opportunity exists to utilise our knowledge of major genes that influence the economically important traits in wool sheep. Genes with Mendelian inheritance have been identified for many important traits in wool sheep. Of particular importance are genes influencing pigmentation, wool quality and the keratin proteins, the latter of which are important for the morphology of the wool fibre. Gene mapping studies have identified some chromosomal regions associated with variation in wool quality and production traits. The challenge now is to build on this knowledge base in a cost-effective way to deliver molecular tools that facilitate enhanced genetic improvement programs for wool sheep.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Update on reproductive biotechnologies in small ruminants and camelids.

              Recent advances in reproductive biotechnologies in small ruminants include improvement of methods for in vitro production of embryos and attempts at spermatogonial stem cell transplantation. In vitro production of embryos by IVM/IVF, intra-cytoplasmic sperm injection (ICSI), or nuclear transfer (NT) has been made possible by improvements in oocyte collection and maturation techniques, and early embryo culture systems. However, in vitro embryo production still is not very efficient due to several limiting factors affecting the outcome of each step of the process. This paper discusses factors affecting in vitro embryo production in small ruminants and camelids, as well as preliminary results with the technique of spermatogonial stem cell transplantation.
                Bookmark

                Author and article information

                Journal
                BMC Genet
                BMC Genetics
                BioMed Central
                1471-2156
                2010
                20 July 2010
                : 11
                : 70
                Affiliations
                [1 ]Department of Physiological Sciences, University of Pisa, Via San Zeno 31, 56123 Pisa, Italy
                [2 ]Department of Environmental Sciences, University of Camerino, Camerino, Italy
                [3 ]INIA, ILLPA Puno, Rinconada Salcedo, Puno, Peru
                [4 ]Ente per le Nuove Tecnologie, l'Energia e l'Ambiente, Roma, Italy
                Article
                1471-2156-11-70
                10.1186/1471-2156-11-70
                2914767
                20646304
                75a0750b-5334-410d-adf8-66d656f9a0d7
                Copyright ©2010 Presciuttini et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 17 March 2010
                : 20 July 2010
                Categories
                Research Article

                Genetics
                Genetics

                Comments

                Comment on this article