6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Testis Development and Differentiation in Amphibians

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Sex is determined genetically in amphibians; however, little is known about the sex chromosomes, testis-determining genes, and the genes involved in testis differentiation in this class. Certain inherent characteristics of the species of this group, like the homomorphic sex chromosomes, the high diversity of the sex-determining mechanisms, or the existence of polyploids, may hinder the design of experiments when studying how the gonads can differentiate. Even so, other features, like their external development or the possibility of inducing sex reversal by external treatments, can be helpful. This review summarizes the current knowledge on amphibian sex determination, gonadal development, and testis differentiation. The analysis of this information, compared with the information available for other vertebrate groups, allows us to identify the evolutionarily conserved and divergent pathways involved in testis differentiation. Overall, the data confirm the previous observations in other vertebrates—the morphology of the adult testis is similar across different groups; however, the male-determining signal and the genetic networks involved in testis differentiation are not evolutionarily conserved.

          Related collections

          Most cited references219

          • Record: found
          • Abstract: found
          • Article: not found

          Genome evolution in the allotetraploid frog Xenopus laevis

          To explore the origins and consequences of tetraploidy in the African clawed frog, we sequenced the Xenopus laevis genome and compared it to the related diploid X. tropicalis genome. We demonstrate the allotetraploid origin of X. laevis by partitioning its genome into two homeologous subgenomes, marked by distinct families of “fossil” transposable elements. Based on the activity of these elements and the age of hundreds of unitary pseudogenes, we estimate that the two diploid progenitor species diverged ~34 million years ago (Mya) and combined to form an allotetraploid ~17–18 Mya. 56% of all genes are retained in two homeologous copies. Protein function, gene expression, and the amount of flanking conserved sequence all correlate with retention rates. The subgenomes have evolved asymmetrically, with one chromosome set more often preserving the ancestral state and the other experiencing more gene loss, deletion, rearrangement, and reduced gene expression.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The central role of Sertoli cells in spermatogenesis.

            Sertoli cells are the somatic cells of the testis that are essential for testis formation and spermatogenesis. Sertoli cells facilitate the progression of germ cells to spermatozoa via direct contact and by controlling the environment milieu within the seminiferous tubules. The regulation of spermatogenesis by FSH and testosterone occurs by the action of these hormones on the Sertoli cells. While the action of testosterone is necessary for spermatogenesis, the action of FSH minimally serves to promote spermatogenic output by increasing the number of Sertoli cells. Copyright 1998 Academic Press.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A W-linked DM-domain gene, DM-W, participates in primary ovary development in Xenopus laevis.

              In the XX/XY sex-determining system, the Y-linked SRY genes of most mammals and the DMY/Dmrt1bY genes of the teleost fish medaka have been characterized as sex-determining genes that trigger formation of the testis. However, the molecular mechanism of the ZZ/ZW-type system in vertebrates, including the clawed frog Xenopus laevis, is unknown. Here, we isolated an X. laevis female genome-specific DM-domain gene, DM-W, and obtained molecular evidence of a W-chromosome in this species. The DNA-binding domain of DM-W showed a strikingly high identity (89%) with that of DMRT1, but it had no significant sequence similarity with the transactivation domain of DMRT1. In nonmammalian vertebrates, DMRT1 expression is connected to testis formation. We found DMRT1 or DM-W to be expressed exclusively in the primordial gonads of both ZZ and ZW or ZW tadpoles, respectively. Although DMRT1 showed continued expression after sex determination, DM-W was expressed transiently during sex determination. Interestingly, DM-W mRNA was more abundant than DMRT1 mRNA in the primordial gonads of ZW tadpoles early in sex determination. To assess the role of DM-W, we produced transgenic tadpoles carrying a DM-W expression vector driven by approximately 3 kb of the 5'-flanking sequence of DM-W or by the cytomegalovirus promoter. Importantly, some developing gonads of ZZ transgenic tadpoles showed ovarian cavities and primary oocytes with both drivers, suggesting that DM-W is crucial for primary ovary formation. Taken together, these results suggest that DM-W is a likely sex (ovary)-determining gene in X. laevis.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Genes (Basel)
                Genes (Basel)
                genes
                Genes
                MDPI
                2073-4425
                16 April 2021
                April 2021
                : 12
                : 4
                : 578
                Affiliations
                Departamento de Biología Experimental, Facultad de Ciencias Experimentales, Campus Las Lagunillas S/N, Universidad de Jaén, 23071 Jaén, Spain; asroco@ 123456ujaen.es (Á.S.R.); arg00027@ 123456red.ujaen.es (A.R.-G.)
                Author notes
                [* ]Correspondence: bullejos@ 123456ujaen.es ; Tel.: +34-953-212770
                Author information
                https://orcid.org/0000-0002-7363-3939
                https://orcid.org/0000-0003-3256-8840
                Article
                genes-12-00578
                10.3390/genes12040578
                8072878
                77307024-fbfc-43e3-984f-7dcaf4f906b7
                © 2021 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( https://creativecommons.org/licenses/by/4.0/).

                History
                : 26 February 2021
                : 14 April 2021
                Categories
                Review

                amphibian,sex determination,gonadal differentiation,testis,sex reversal

                Comments

                Comment on this article