3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Feasibility of microRNA profiling in human inner ear perilymph :

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          The long and short of microRNA.

          MicroRNAs (miRNAs) are versatile regulators of gene expression in higher eukaryotes. In order to silence many different mRNAs in a precise manner, miRNA stability and efficacy is controlled by highly developed regulatory pathways and fine-tuning mechanisms both affecting miRNA processing and altering mature miRNA target specificity. Copyright © 2013 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The biological functions of miRNAs: lessons from in vivo studies.

            Despite their clear importance as a class of regulatory molecules, pinpointing the relevance of individual miRNAs has been challenging. Studies querying miRNA functions by overexpressing or silencing specific miRNAs have yielded data that are often at odds with those collected from loss-of-functions models. In addition, knockout studies suggest that many conserved miRNAs are dispensable for animal development or viability. In this review, we discuss these observations in the context of our current knowledge of miRNA biology and review the evidence implicating miRNA-mediated gene regulation in the mechanisms that ensure biological robustness.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Profiles of Extracellular miRNA in Cerebrospinal Fluid and Serum from Patients with Alzheimer's and Parkinson's Diseases Correlate with Disease Status and Features of Pathology

              The discovery and reliable detection of markers for neurodegenerative diseases have been complicated by the inaccessibility of the diseased tissue- such as the inability to biopsy or test tissue from the central nervous system directly. RNAs originating from hard to access tissues, such as neurons within the brain and spinal cord, have the potential to get to the periphery where they can be detected non-invasively. The formation and extracellular release of microvesicles and RNA binding proteins have been found to carry RNA from cells of the central nervous system to the periphery and protect the RNA from degradation. Extracellular miRNAs detectable in peripheral circulation can provide information about cellular changes associated with human health and disease. In order to associate miRNA signals present in cell-free peripheral biofluids with neurodegenerative disease status of patients with Alzheimer's and Parkinson's diseases, we assessed the miRNA content in cerebrospinal fluid and serum from postmortem subjects with full neuropathology evaluations. We profiled the miRNA content from 69 patients with Alzheimer's disease, 67 with Parkinson's disease and 78 neurologically normal controls using next generation small RNA sequencing (NGS). We report the average abundance of each detected miRNA in cerebrospinal fluid and in serum and describe 13 novel miRNAs that were identified. We correlated changes in miRNA expression with aspects of disease severity such as Braak stage, dementia status, plaque and tangle densities, and the presence and severity of Lewy body pathology. Many of the differentially expressed miRNAs detected in peripheral cell-free cerebrospinal fluid and serum were previously reported in the literature to be deregulated in brain tissue from patients with neurodegenerative disease. These data indicate that extracellular miRNAs detectable in the cerebrospinal fluid and serum are reflective of cell-based changes in pathology and can be used to assess disease progression and therapeutic efficacy.
                Bookmark

                Author and article information

                Journal
                NeuroReport
                NeuroReport
                Ovid Technologies (Wolters Kluwer Health)
                0959-4965
                2018
                August 2018
                : 29
                : 11
                : 894-901
                Article
                10.1097/WNR.0000000000001049
                7737fcee-fe1a-4149-9976-b05665a94d01
                © 2018
                History

                Comments

                Comment on this article