10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      α-Synuclein and Noradrenergic Modulation of Immune Cells in Parkinson’s Disease Pathogenesis

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          α-synuclein (α-syn) pathology and loss of noradrenergic neurons in the locus coeruleus (LC) are among the most ubiquitous features of Parkinson’s disease (PD). While noradrenergic dysfunction is associated with non-motor symptoms of PD, preclinical research suggests that the loss of LC norepinephrine (NE), and subsequently its immune modulatory and neuroprotective actions, may exacerbate or even accelerate disease progression. In this review, we discuss the mechanisms by which α-syn pathology and loss of central NE may directly impact brain health by interrupting neurotrophic factor signaling, exacerbating neuroinflammation, and altering regulation of innate and adaptive immune cells.

          Related collections

          Most cited references162

          • Record: found
          • Abstract: found
          • Article: not found

          Melanized dopaminergic neurons are differentially susceptible to degeneration in Parkinson's disease.

          In idiopathic Parkinson's disease massive cell death occurs in the dopamine-containing substantia nigra. A link between the vulnerability of nigral neurons and the prominent pigmentation of the substantia nigra, though long suspected, has not been proved. This possibility is supported by evidence that N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and its metabolite MPP+, the latter of which causes destruction of nigral neurons, bind to neuromelanin. We have directly tested this hypothesis by a quantitative analysis of neuromelanin-pigmented neurons in control and parkinsonian midbrains. The findings demonstrate first that the dopamine-containing cell groups of the normal human midbrain differ markedly from each other in the percentage of neuromelanin-pigmented neurons they contain. Second, the estimated cell loss in these cell groups in Parkinson's disease is directly correlated (r = 0.97, P = 0.0057) with the percentage of neuromelanin-pigmented neurons normally present in them. Third, within each cell group in the Parkinson's brains, there is greater relative sparing of non-pigmented than of neuromelanin-pigmented neurons. This evidence suggests a selective vulnerability of the neuromelanin-pigmented subpopulation of dopamine-containing mesencephalic neurons in Parkinson's disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Dopaminergic loss and inclusion body formation in alpha-synuclein mice: implications for neurodegenerative disorders.

            To elucidate the role of the synaptic protein alpha-synuclein in neurodegenerative disorders, transgenic mice expressing wild-type human alpha-synuclein were generated. Neuronal expression of human alpha-synuclein resulted in progressive accumulation of alpha-synuclein-and ubiquitin-immunoreactive inclusions in neurons in the neocortex, hippocampus, and substantia nigra. Ultrastructural analysis revealed both electron-dense intranuclear deposits and cytoplasmic inclusions. These alterations were associated with loss of dopaminergic terminals in the basal ganglia and with motor impairments. These results suggest that accumulation of wild-type alpha-synuclein may play a causal role in Parkinson's disease and related conditions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Blockade of microglial activation is neuroprotective in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson disease.

              1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) damages the nigrostriatal dopaminergic pathway as seen in Parkinson's disease (PD), a common neurodegenerative disorder with no effective protective treatment. Consistent with a role of glial cells in PD neurodegeneration, here we show that minocycline, an approved tetracycline derivative that inhibits microglial activation independently of its antimicrobial properties, mitigates both the demise of nigrostriatal dopaminergic neurons and the formation of nitrotyrosine produced by MPTP. In addition, we show that minocycline not only prevents MPTP-induced activation of microglia but also the formation of mature interleukin-1beta and the activation of NADPH-oxidase and inducible nitric oxide synthase (iNOS), three key microglial-derived cytotoxic mediators. Previously, we demonstrated that ablation of iNOS attenuates MPTP-induced neurotoxicity. Now, we demonstrate that iNOS is not the only microglial-related culprit implicated in MPTP-induced toxicity because mutant iNOS-deficient mice treated with minocycline are more resistant to this neurotoxin than iNOS-deficient mice not treated with minocycline. This study demonstrates that microglial-related inflammatory events play a significant role in the MPTP neurotoxic process and suggests that minocycline may be a valuable neuroprotective agent for the treatment of PD.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Neurosci
                Front Neurosci
                Front. Neurosci.
                Frontiers in Neuroscience
                Frontiers Media S.A.
                1662-4548
                1662-453X
                11 September 2018
                2018
                : 12
                : 626
                Affiliations
                Tansey Laboratory, Department of Physiology, School of Medicine, Emory University , Atlanta, GA, United States
                Author notes

                Edited by: Ruth G. Perez, Texas Tech University Health Sciences Center, United States

                Reviewed by: Luigi Bubacco, Università degli Studi di Padova, Italy; Victor Tapias, Weill Cornell Medicine, United States

                *Correspondence: Malú G. Tansey, malu.tansey@ 123456emory.edu

                This article was submitted to Neurodegeneration, a section of the journal Frontiers in Neuroscience

                Article
                10.3389/fnins.2018.00626
                6143806
                30258347
                77bfab06-5a14-4398-a5b4-3b06dc626ba4
                Copyright © 2018 Butkovich, Houser and Tansey.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 30 June 2018
                : 21 August 2018
                Page count
                Figures: 1, Tables: 0, Equations: 0, References: 202, Pages: 13, Words: 0
                Categories
                Neuroscience
                Review

                Neurosciences
                α-synuclein,locus coeruleus,parkinson’s disease,neuroinflammation,norepinephrine,immune cell

                Comments

                Comment on this article