20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Zebrafish RNase T2 genes and the evolution of secretory ribonucleases in animals

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Members of the Ribonuclease (RNase) T2 family are common models for enzymological studies, and their evolution has been well characterized in plants. This family of acidic RNases is widespread, with members in almost all organisms including plants, animals, fungi, bacteria and even some viruses. While several biological functions have been proposed for these enzymes in plants, their role in animals is unknown. Interestingly, in vertebrates most of the biological roles of plant RNase T2 proteins are carried out by members of a different family, RNase A. Still, RNase T2 proteins are conserved in these animals

          Results

          As a first step to shed light on the role of animal RNase T2 enzymes, and to understand the evolution of these proteins while co-existing with the RNase A family, we characterized RNase Dre1 and RNase Dre2, the two RNase T2 genes present in the zebrafish ( Danio rerio) genome. These genes are expressed in most tissues examined, including high expression in all stages of embryonic development, and their expression corresponds well with the presence of acidic RNase activities in every tissue analyzed. Embryo expression seems to be a conserved characteristic of members of this family, as other plant and animal RNase T2 genes show similar high expression during embryo development. While plant RNase T2 proteins and the vertebrate RNase A family show evidences of radiation and gene sorting, vertebrate RNase T2 proteins form a monophyletic group, but there is also another monophyletic group defining a fish-specific RNase T2 clade.

          Conclusion

          Based on gene expression and phylogenetic analyses we propose that RNase T2 enzymes carry out a housekeeping function. This conserved biological role probably kept RNase T2 enzymes in animal genomes in spite of the presence of RNases A. A hypothetical role during embryo development is also discussed.

          Related collections

          Most cited references57

          • Record: found
          • Abstract: found
          • Article: not found
          Is Open Access

          The amphioxus genome and the evolution of the chordate karyotype.

          Lancelets ('amphioxus') are the modern survivors of an ancient chordate lineage, with a fossil record dating back to the Cambrian period. Here we describe the structure and gene content of the highly polymorphic approximately 520-megabase genome of the Florida lancelet Branchiostoma floridae, and analyse it in the context of chordate evolution. Whole-genome comparisons illuminate the murky relationships among the three chordate groups (tunicates, lancelets and vertebrates), and allow not only reconstruction of the gene complement of the last common chordate ancestor but also partial reconstruction of its genomic organization, as well as a description of two genome-wide duplications and subsequent reorganizations in the vertebrate lineage. These genome-scale events shaped the vertebrate genome and provided additional genetic variation for exploitation during vertebrate evolution.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Paleontological evidence to date the tree of life.

            The role of fossils in dating the tree of life has been misunderstood. Fossils can provide good "minimum" age estimates for branches in the tree, but "maximum" constraints on those ages are poorer. Current debates about which are the "best" fossil dates for calibration move to consideration of the most appropriate constraints on the ages of tree nodes. Because fossil-based dates are constraints, and because molecular evolution is not perfectly clock-like, analysts should use more rather than fewer dates, but there has to be a balance between many genes and few dates versus many dates and few genes. We provide "hard" minimum and "soft" maximum age constraints for 30 divergences among key genome model organisms; these should contribute to better understanding of the dating of the animal tree of life.
              Bookmark
              • Record: found
              • Abstract: not found
              • Book: not found

              PAUP*. Phylogenetic analysis using parsimony (*and other methods)

                Bookmark

                Author and article information

                Journal
                BMC Evol Biol
                BMC Evolutionary Biology
                BioMed Central
                1471-2148
                2009
                20 July 2009
                : 9
                : 170
                Affiliations
                [1 ]Interdepartmental Genetics Graduate Program, Iowa State University, Ames, IA 50011, USA
                [2 ]Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
                [3 ]Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
                Article
                1471-2148-9-170
                10.1186/1471-2148-9-170
                2720953
                19619322
                77cbe77d-f096-4f51-9083-e1d398d434d2
                Copyright © 2009 Hillwig et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 24 February 2009
                : 20 July 2009
                Categories
                Research Article

                Evolutionary Biology
                Evolutionary Biology

                Comments

                Comment on this article