5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Characterization of C-S Lyase from C. diphtheriae: A Possible Target for New Antimicrobial Drugs

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The emergence of antibiotic resistance in microbial pathogens requires the identification of new antibacterial drugs. The biosynthesis of methionine is an attractive target because of its central importance in cellular metabolism. Moreover, most of the steps in methionine biosynthesis pathway are absent in mammals, lowering the probability of unwanted side effects. Herein, detailed biochemical characterization of one enzyme required for methionine biosynthesis, a pyridoxal-5′-phosphate (PLP-) dependent C-S lyase from Corynebacterium diphtheriae, a pathogenic bacterium that causes diphtheria, has been performed. We overexpressed the protein in E. coli and analyzed substrate specificity, pH dependence of steady state kinetic parameters, and ligand-induced spectral transitions of the protein. Structural comparison of the enzyme with cystalysin from Treponema denticola indicates a similarity in overall folding. We used site-directed mutagenesis to highlight the importance of active site residues Tyr55, Tyr114, and Arg351, analyzing the effects of amino acid replacement on catalytic properties of enzyme. Better understanding of the active site of C. diphtheriae C-S lyase and the determinants of substrate and reaction specificity from this work will facilitate the design of novel inhibitors as antibacterial therapeutics.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          The future challenges facing the development of new antimicrobial drugs.

          The emergence of resistance to antibacterial agents is a pressing concern for human health. New drugs to combat this problem are therefore in great demand, but as past experience indicates, the time for resistance to new drugs to develop is often short. Conventionally, antibacterial drugs have been developed on the basis of their ability to inhibit bacterial multiplication, and this remains at the core of most approaches to discover new antibacterial drugs. Here, we focus primarily on an alternative novel strategy for antibacterial drug development that could potentially alleviate the current situation of drug resistance--targeting non-multiplying latent bacteria, which prolong the duration of antimicrobial chemotherapy and so might increase the rate of development of resistance.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Aminotransferases: demonstration of homology and division into evolutionary subgroups.

            A total of 150 amino acid sequences of vitamin B6-dependent enzymes are known to date, the largest contingent being furnished by the aminotransferases with 51 sequences of 14 different enzymes. All aminotransferase sequences were aligned by using algorithms for sequence comparison, hydropathy patterns and secondary structure predictions. The aminotransferases could be divided into four subgroups on the basis of their mutual structural relatedness. Subgroup I comprises aspartate, alanine, tyrosine, histidinol-phosphate, and phenylalanine aminotransferases; subgroup II acetylornithine, ornithine, omega-amino acid, 4-aminobutyrate and diaminopelargonate aminotransferases; subgroup III D-alanine and branched-chain amino acid aminotransferases, and subgroup IV serine and phosphoserine aminotransferases. (N-1) Profile analysis, a more stringent application of profile analysis [Gribskov, M., McLachlan, A. D. and Eisenberg, D. (1987) Proc. Natl Acad. Sci. USA 84, 4355-4358], established the homology among the enzymes of each subgroup as well as among all subgroups except subgroup III. However, similarity of active-site segments and the hydropathy patterns around invariant residues suggest that subgroup III, though most distantly related, might also be homologous with the other aminotransferases. On the basis of the comprehensive alignment, a new numbering of amino acid residues applicable to aminotransferases (AT) in general is proposed. In the multiply aligned sequences, only four out of a total of about 400 amino acid residues proved invariant in all 51 sequences, i.e. Gly(314AT)197, Asp/Glu(340AT)222, Lys(385AT)258 and Arg(562AT)386, the number not in parentheses corresponding to the structure of porcine cytosolic aspartate aminotransferase. Apparently, the aminotransferases constitute a group of homologous proteins which diverged into subgroups and, with some exceptions, into substrate-specific individual enzymes already in the universal ancestor cell.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The manifold of vitamin B6 dependent enzymes.

              Pyridoxal-5'-phosphate (vitamin B6) binding enzymes form a large superfamily that contains at least five different folds. The availability of an increasing number of known three-dimensional structures for members of this superfamily has allowed a detailed structural classification. Most progress has been made with the fold type I or aspartate aminotransferase family.
                Bookmark

                Author and article information

                Journal
                Biomed Res Int
                Biomed Res Int
                BMRI
                BioMed Research International
                Hindawi Publishing Corporation
                2314-6133
                2314-6141
                2013
                11 September 2013
                : 2013
                : 701536
                Affiliations
                1Department of Biotechnology, University of Verona, 15 Strada Le Grazie, 37134 Verona, Italy
                2Department of Life Sciences and Reproduction, University of Verona, 8 Strada Le Grazie, 37134 Verona, Italy
                Author notes

                Academic Editor: Alessandro Paiardini

                Author information
                http://orcid.org/0000-0002-7341-0970
                http://orcid.org/0000-0001-8738-6150
                http://orcid.org/0000-0001-8191-440X
                http://orcid.org/0000-0002-5221-9288
                http://orcid.org/0000-0003-2478-8210
                Article
                10.1155/2013/701536
                3784150
                24106714
                77d1f3e8-ffae-4c0a-9cd8-6a431d3e9a73
                Copyright © 2013 Alessandra Astegno et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 5 June 2013
                : 16 July 2013
                Categories
                Research Article

                Comments

                Comment on this article

                scite_

                Similar content244

                Cited by10

                Most referenced authors377