96
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Lipoarabinomannan and related glycoconjugates: structure, biogenesis and role in Mycobacterium tuberculosis physiology and host–pathogen interaction

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Approximately one third of the world's population is infected with Mycobacterium tuberculosis, the causative agent of tuberculosis. This bacterium has an unusual lipid-rich cell wall containing a vast repertoire of antigens, providing a hydrophobic impermeable barrier against chemical drugs, thus representing an attractive target for vaccine and drug development. Apart from the mycolyl–arabinogalactan–peptidoglycan complex, mycobacteria possess several immunomodulatory constituents, notably lipomannan and lipoarabinomannan. The availability of whole-genome sequences of M. tuberculosis and related bacilli over the past decade has led to the identification and functional characterization of various enzymes and the potential drug targets involved in the biosynthesis of these glycoconjugates. Both lipomannan and lipoarabinomannan possess highly variable chemical structures, which interact with different receptors of the immune system during host–pathogen interactions, such as Toll-like receptors-2 and C-type lectins. Recently, the availability of mutants defective in the synthesis of these glycoconjugates in mycobacteria and the closely related bacterium, Corynebacterium glutamicum, has paved the way for host–pathogen interaction studies, as well as, providing attenuated strains of mycobacteria for the development of new vaccine candidates. This review provides a comprehensive account of the structure, biosynthesis and immunomodulatory properties of these important glycoconjugates.

          Related collections

          Most cited references306

          • Record: found
          • Abstract: found
          • Article: not found

          The Pfam protein families database.

          Pfam is a large collection of protein families and domains. Over the past 2 years the number of families in Pfam has doubled and now stands at 6190 (version 10.0). Methodology improvements for searching the Pfam collection locally as well as via the web are described. Other recent innovations include modelling of discontinuous domains allowing Pfam domain definitions to be closer to those found in structure databases. Pfam is available on the web in the UK (http://www.sanger.ac.uk/Software/Pfam/), the USA (http://pfam.wustl.edu/), France (http://pfam.jouy.inra.fr/) and Sweden (http://Pfam.cgb.ki.se/).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Genes required for mycobacterial growth defined by high density mutagenesis.

            Despite over a century of research, tuberculosis remains a leading cause of infectious death worldwide. Faced with increasing rates of drug resistance, the identification of genes that are required for the growth of this organism should provide new targets for the design of antimycobacterial agents. Here, we describe the use of transposon site hybridization (TraSH) to comprehensively identify the genes required by the causative agent, Mycobacterium tuberculosis, for optimal growth. These genes include those that can be assigned to essential pathways as well as many of unknown function. The genes important for the growth of M. tuberculosis are largely conserved in the degenerate genome of the leprosy bacillus, Mycobacterium leprae, indicating that non-essential functions have been selectively lost since this bacterium diverged from other mycobacteria. In contrast, a surprisingly high proportion of these genes lack identifiable orthologues in other bacteria, suggesting that the minimal gene set required for survival varies greatly between organisms with different evolutionary histories.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The envelope of mycobacteria.

              Mycobacteria, members of which cause tuberculosis and leprosy, produce cell walls of unusually low permeability, which contribute to their resistance to therapeutic agents. Their cell walls contain large amounts of C60-C90 fatty acids, mycolic acids, that are covalently linked to arabinogalactan. Recent studies clarified the unusual structures of arabinogalactan as well as of extractable cell wall lipids, such as trehalose-based lipooligosaccharides, phenolic glycolipids, and glycopeptidolipids. Most of the hydrocarbon chains of these lipids assemble to produce an asymmetric bilayer of exceptional thickness. Structural considerations suggest that the fluidity is exceptionally low in the innermost part of bilayer, gradually increasing toward the outer surface. Differences in mycolic acid structure may affect the fluidity and permeability of the bilayer, and may explain the different sensitivity levels of various mycobacterial species to lipophilic inhibitors. Hydrophilic nutrients and inhibitors, in contrast, traverse the cell wall presumably through channels of recently discovered porins.
                Bookmark

                Author and article information

                Journal
                FEMS Microbiol Rev
                fmr
                Fems Microbiology Reviews
                Blackwell Publishing Ltd
                0168-6445
                1574-6976
                November 2011
                31 May 2011
                : 35
                : 6
                : 1126-1157
                Affiliations
                [1 ]simpleSchool of Biosciences, University of Birmingham Edgbaston, Birmingham, UK
                [2 ]simpleDepartment of Medical Microbiology and Infection Control, VU University Medical Center Amsterdam, The Netherlands
                Author notes
                Gurdyal S. Besra, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK. Tel.: +44 121 415 8125; fax: +44 121 414 5925; e-mail: g.besra@ 123456bham.ac.uk
                Article
                10.1111/j.1574-6976.2011.00276.x
                3229680
                21521247
                77ecf617-a463-4a60-95a3-facf813b0e95
                © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved

                Re-use of this article is permitted in accordance with the Creative Commons Deed, Attribution 2.5, which does not permit commercial exploitation.

                History
                : 22 April 2010
                : 28 March 2011
                : 19 April 2011
                Categories
                Review Articles

                Microbiology & Virology
                bacterial,polysaccharides,cell wall,biosynthesis,glycosyltransferases,drug-targets

                Comments

                Comment on this article