Blog
About

14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Sertraline-induced reproductive toxicity in male rats: evaluation of possible underlying mechanisms

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This study was conducted to clarify the toxic effects of sertraline (SRT) on the reproductive system of male rats and to elucidate the underlying mechanisms. Rats were treated orally with SRT at doses of 5, 10, and 20 mg kg −1 for 28 consecutive days. At the end of the treatment period, sperm concentration, sperm motility, and sperm morphology were investigated by computer-assisted sperm analysis system whereas sperm DNA damage was detected by comet assay. The oxidative status of the testes was investigated, and a histopathological examination was conducted. Serum testosterone, follicle-stimulating hormone (FSH), and luteinizing hormone (LH) levels were measured to determine the effects of SRT on the spermatogenesis process. One-way ANOVA, post-hoc Dunnett's T3 test for the sperm comet assay, and post-hoc Tukey's test for the others were performed for statistical analysis. The results showed that SRT caused an increase in sperm DNA damage and induced histopathological lesions in all groups treated with SRT. There was abnormal sperm morphology and increased malondialdehyde (MDA) in the 10 mg kg −1 treatment group. More dramatic changes were observed in the 20 mg kg −1 treatment group. Decreased sperm count was accompanied by a significant increase in abnormal sperm morphology, DNA damage, and degeneration in cellular-tubular structures. Serum LH and testosterone levels were elevated in the 20 mg kg −1 treatment group. Decreased glutathione (GSH) and increased MDA were signs of enhanced oxidative stress (OS). In conclusion, SRT induced testicular toxicity in a dose-dependent manner and OS is suggested as a crucial mechanism.

          Related collections

          Most cited references 70

          • Record: found
          • Abstract: found
          • Article: not found

          The role of free radicals and antioxidants in reproduction.

          This review summarizes the role of free radicals and oxidative stress in the pathophysiology of human reproduction. An extensive review of the literature on the role of oxidative stress in influencing assisted reproduction and its outcome is described in this article. Free radicals or reactive oxygen species mediate their action through many of the proinflammatory cytokines and this mechanism has been proposed as a common underlying factor for endometriosis, ovarian cancer, polycystic ovary disease, and various other pathologies affecting the female reproductive process, as highlighted in this review. Oxidative stress, sperm DNA damage, and apoptosis have been implicated in male infertility. Elevated reactive oxygen species levels correlate with the poor fertility outcomes seen in the assisted reproductive technology setting. Oxidative stress has been implicated in male and female infertility, including fetal dysmorphogenesis, abortions, and intrauterine growth restriction. Accurate evaluation of seminal oxidative stress by standardized assays may help in the diagnosis and management of male infertility. There is evidence in the literature on the beneficial effects of oral antioxidant supplementation in male infertility. Current ongoing trials will provide answers on the safety and effectiveness of antioxidants in improving maternal and fetal outcomes. Further studies need to be conducted to determine if antioxidant supplementation will prevent fetal developmental defects in high-risk pregnancy with diabetes.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Oxidative stress and male infertility: from research bench to clinical practice.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Sperm DNA damage caused by oxidative stress: modifiable clinical, lifestyle and nutritional factors in male infertility.

              DNA fragmentation is an important factor in the aetiology of male infertility. However, it is still underevaluated and its inclusion in routine semen analysis is debated. DNA fragmentation has been shown to be a robust indicator of fertility potential, more so than conventional semen parameters. Men with high DNA fragmentation levels have significantly lower odds of conceiving, naturally or through procedures such as intrauterine insemination and IVF. Couples may be counselled to proceed directly to intracytoplasmic sperm injection as it is more successful in this group, avoiding costly procedures, recurrent failures or pregnancy losses; however, this treatment is not without limitations or risks. Ideally DNA fragmentation should be minimized where possible. Oxidative stress is the major cause of DNA fragmentation in spermatozoa. Endogenous and exogenous factors that contribute to oxidative stress are discussed, and in many cases are shown to be easily modifiable. Antioxidants play a protective role, although a delicate balance of reduction and oxidation is required for essential functions, including fertilization. Reducing oxidative stress may improve a couple's chances of conception either naturally or via assisted reproduction. Sources of oxidative stress therefore should be thoroughly examined in men with high levels of DNA fragmentation and modified where possible. DNA fragmentation is an important factor in the aetiology of male infertility. However it is still underevaluated and its inclusion in routine semen analysis is still debated. DNA fragmentation has been shown to be a robust indicator of fertility potential, more so than conventional semen parameters. Men with high levels of DNA fragmentation will have significantly lower odds of conceiving naturally or through procedures such as intrauterine insemination and IVF. Intracytoplasmic sperm injection (ICSI) may be much more successful in this group, and couples may be counselled to proceed directly to ICSI, avoiding costly procedures, recurrent failures or pregnancy losses. However, ICSI is not without its limitations or risks. Ideally, DNA fragmentation should be investigated and minimized where possible in men trying to conceive naturally or through assisted reproduction technology. Oxidative stress is the major cause of DNA fragmentation in spermatozoa. Endogenous and exogenous factors that contribute to oxidative stress are discussed and in many cases are easily modifiable. Antioxidants play a protective role, although a delicate balance of reduction and oxidation is required for essential sperm function, including fertilization. Reducing oxidative stress may improve a couple's chances of conception either naturally or via assisted reproduction treatment. Sources of oxidative stress therefore should be thoroughly examined in men with high levels of DNA fragmentation and modified where possible. Copyright © 2014 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Asian J Androl
                Asian J. Androl
                AJA
                Asian Journal of Andrology
                Medknow Publications & Media Pvt Ltd (India )
                1008-682X
                1745-7262
                Nov-Dec 2017
                13 December 2016
                : 19
                : 6
                : 672-679
                Affiliations
                [1 ]Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Anadolu University, Eskisehir 26470, Turkey
                [2 ]Department of Biology, Faculty of Science, Anadolu University, Eskisehir 26470, Turkey
                Author notes
                Correspondence: Dr. O Atli ( oatli@ 123456anadolu.edu.tr )
                Article
                AJA-19-672
                10.4103/1008-682X.192637
                5676427
                27976631
                Copyright: © The Author(s)(2017)

                This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms.

                Categories
                Original Article

                Comments

                Comment on this article