0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Patterns of host-parasite associations between marine meiofaunal flatworms (Platyhelminthes) and rhytidocystids (Apicomplexa)

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Microturbellarians are abundant and ubiquitous members of marine meiofaunal communities around the world. Because of their small body size, these microscopic animals are rarely considered as hosts for parasitic organisms. Indeed, many protists, both free-living and parasitic ones, equal or surpass meiofaunal animals in size. Despite several anecdotal records of “gregarines”, “sporozoans”, and “apicomplexans” parasitizing microturbellarians in the literature—some of them dating back to the nineteenth century—these single-celled parasites have never been identified and characterized. More recently, the sequencing of eukaryotic microbiomes in microscopic invertebrates have revealed a hidden diversity of protist parasites infecting microturbellarians and other meiofaunal animals. Here we show that apicomplexans isolated from twelve taxonomically diverse rhabdocoel taxa and one species of proseriate collected in four geographically distinct areas around the Pacific Ocean (Okinawa, Hokkaido, and British Columbia) and the Caribbean Sea (Curaçao) all belong to the apicomplexan genus Rhytidocystis. Based on comprehensive molecular phylogenies of Rhabdocoela and Proseriata inferred from both 18S and 28S rDNA sequences, as well as a molecular phylogeny of Marosporida inferred from 18S rDNA sequences, we determine the phylogenetic positions of the microturbellarian hosts and their parasites. Multiple lines of evidence, including morphological and molecular data, show that at least nine new species of Rhytidocystis infect the microturbellarian hosts collected in this study, more than doubling the number of previously recognized species of Rhytidocystis, all of which infect polychaete hosts. A cophylogenetic analysis examining patterns of phylosymbiosis between hosts and parasites suggests a complex picture of overall incongruence between host and parasite phylogenies, and varying degrees of geographic signals and taxon specificity.

          Related collections

          Most cited references72

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies

          Motivation: Phylogenies are increasingly used in all fields of medical and biological research. Moreover, because of the next-generation sequencing revolution, datasets used for conducting phylogenetic analyses grow at an unprecedented pace. RAxML (Randomized Axelerated Maximum Likelihood) is a popular program for phylogenetic analyses of large datasets under maximum likelihood. Since the last RAxML paper in 2006, it has been continuously maintained and extended to accommodate the increasingly growing input datasets and to serve the needs of the user community. Results: I present some of the most notable new features and extensions of RAxML, such as a substantial extension of substitution models and supported data types, the introduction of SSE3, AVX and AVX2 vector intrinsics, techniques for reducing the memory requirements of the code and a plethora of operations for conducting post-analyses on sets of trees. In addition, an up-to-date 50-page user manual covering all new RAxML options is available. Availability and implementation: The code is available under GNU GPL at https://github.com/stamatak/standard-RAxML. Contact: alexandros.stamatakis@h-its.org Supplementary information: Supplementary data are available at Bioinformatics online.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data

            Summary: The two main functions of bioinformatics are the organization and analysis of biological data using computational resources. Geneious Basic has been designed to be an easy-to-use and flexible desktop software application framework for the organization and analysis of biological data, with a focus on molecular sequences and related data types. It integrates numerous industry-standard discovery analysis tools, with interactive visualizations to generate publication-ready images. One key contribution to researchers in the life sciences is the Geneious public application programming interface (API) that affords the ability to leverage the existing framework of the Geneious Basic software platform for virtually unlimited extension and customization. The result is an increase in the speed and quality of development of computation tools for the life sciences, due to the functionality and graphical user interface available to the developer through the public API. Geneious Basic represents an ideal platform for the bioinformatics community to leverage existing components and to integrate their own specific requirements for the discovery, analysis and visualization of biological data. Availability and implementation: Binaries and public API freely available for download at http://www.geneious.com/basic, implemented in Java and supported on Linux, Apple OSX and MS Windows. The software is also available from the Bio-Linux package repository at http://nebc.nerc.ac.uk/news/geneiousonbl. Contact: peter@biomatters.com
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              MrBayes 3: Bayesian phylogenetic inference under mixed models.

              MrBayes 3 performs Bayesian phylogenetic analysis combining information from different data partitions or subsets evolving under different stochastic evolutionary models. This allows the user to analyze heterogeneous data sets consisting of different data types-e.g. morphological, nucleotide, and protein-and to explore a wide variety of structured models mixing partition-unique and shared parameters. The program employs MPI to parallelize Metropolis coupling on Macintosh or UNIX clusters.
                Bookmark

                Author and article information

                Contributors
                niels_van_steenkiste@hotmail.com
                wakeman.k@oia.hokudai.ac.jp
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                29 November 2023
                29 November 2023
                2023
                : 13
                : 21050
                Affiliations
                [1 ]Departments of Botany and Zoology, University of British Columbia, ( https://ror.org/03rmrcq20) Vancouver, BC Canada
                [2 ]Hakai Institute, ( https://ror.org/02pry0c91) Heriot Bay, Quadra Island, BC Canada
                [3 ]Institute for the Advancement of High Education, Hokkaido University, ( https://ror.org/02e16g702) Sapporo, Japan
                [4 ]Australian Institute for Microbiology and Infection, University of Technology Sydney, ( https://ror.org/03f0f6041) Ultimo, Australia
                Article
                48233
                10.1038/s41598-023-48233-y
                10687266
                38030717
                7818af3d-48df-4210-b57a-2d77e747b580
                © The Author(s) 2023

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 24 August 2023
                : 23 November 2023
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/100014446, Tula Foundation;
                Funded by: FundRef http://dx.doi.org/10.13039/501100001691, Japan Society for the Promotion of Science;
                Award ID: 18K14774
                Award Recipient :
                Funded by: FundRef http://dx.doi.org/10.13039/501100000038, Natural Sciences and Engineering Research Council of Canada;
                Award ID: 2019-03986
                Award Recipient :
                Categories
                Article
                Custom metadata
                © Springer Nature Limited 2023

                Uncategorized
                evolution,zoology
                Uncategorized
                evolution, zoology

                Comments

                Comment on this article