45
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The effect of colostrum intake on blood plasma proteome profile in newborn lambs: low abundance proteins

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Colostrum intake by newborn lambs plays a fundamental role in the perinatal period, ensuring lamb survival. In this study, blood plasma samples from two groups of newborn lambs (Colostrum group and Delayed Colostrum group) at 2 and 14 h after birth were treated to reduce the content of high abundance proteins and analyzed using Two-Dimensional Differential in Gel Electrophoresis and MALDI MS/MS for protein identification in order to investigate low abundance proteins with immune function in newborn lambs.

          Results

          The results showed that four proteins were increased in the blood plasma of lambs due to colostrum intake. These proteins have not been previously described as increased in blood plasma of newborn ruminants by colostrum intake. Moreover, these proteins have been described as having an immune function in other species, some of which were previously identified in colostrum and milk.

          Conclusions

          In conclusion, colostrum intake modified the low abundance proteome profile of blood plasma from newborn lambs, increasing the concentration of apolipoprotein A-IV, plasminogen, serum amyloid A and fibrinogen, demonstrating that colostrum is essential, not only for the provision of immunoglobulins, but also because of increases in several low abundance proteins with immune function.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          Bovine milk exosome proteome.

          Exosomes are 40-100 nm membrane vesicles of endocytic origin, secreted by cells and are found in biological fluids including milk. These exosomes are extracellular organelles important in intracellular communication, and immune function. Therefore, the proteome of bovine milk exosomes may provide insight into the complex processes of milk production. Exosomes were isolated from the milk of mid-lactation cows. Purified exosomes were trypsin digested, subjected offline high pH reverse phase chromatography and further fractionated on a nanoLC connected to tandem mass spectrometer. This resulted in identification of 2107 proteins that included all of the major exosome protein markers. The major milk fat globule membrane (MFGM) proteins (Butyrophilin, Xanthine oxidase, Adipophilin and Lactadherin) were the most abundant proteins found in milk exosomes. However, they represented only 0.4-1.2% of the total spectra collected from milk exosomes compared to 15-28% of the total spectra collected in the MFGM proteome. These data show that the milk exosome secretion pathway differs significantly from that of the MFGM in part due to the greatly reduced presence of MFGM proteins. The protein composition of milk exosomes provides new information on milk protein composition and the potential physiological significance of exosomes to mammary physiology. Published by Elsevier B.V.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Immune components of bovine colostrum and milk.

            Colostrum and milk provide a complete diet for the neonate. In ruminants, colostrum is also the sole source of initial acquired immunity for the offspring. Milk therefore plays an important role in mammalian host defense. In colostrum, the concentration of immunoglobulins is particularly high, with IgG being the major immunoglobulin class present in ruminant milk, in contrast to IgA being the major immunoglobulin present in human milk. Immunoglobulins are transported into mammary secretions via specialized receptors. In addition to immunoglobulins, both colostrum and milk contain viable cells, including neutrophils and macrophages, which secrete a range of immune-related components into milk. These include cytokines and antimicrobial proteins and peptides, such as lactoferrin, defensins, and cathelicidins. Mammary epithelial cells themselves also contribute to the host defense by secreting a range of innate immune effector molecules. A detailed understanding of these proteins and peptides offers great potential to add value to the dairy industry. This is demonstrated by the wide-ranging commercial applications of lactoferrin derived from bovine milk. Knowledge of the immune function of milk, in particular, how the gland responds to pathogens, can be used to boost the concentrations of immune factors in milk through farm management practices and vaccination protocols. The latter approach is currently being used to maximize yields of bovine milk-derived IgA directed at specific antigens for therapeutic and prophylactic use. Increasingly sophisticated proteomics technologies are being applied to identify and characterize the functions of the minor components of milk. An overview is presented of the immune factors in colostrum and milk as well as the results of research aimed at realizing this untapped value in milk.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Bovine milk fat globule membrane proteome.

              Milk fat globule membranes (MFGM) were isolated from the milk of mid-lactation Holstein cows. The purified MFGM were fractionated using 1-dimensional SDS gels. Tryptic peptides from gel slices were further fractionated on a micro-capillary high performance liquid chromatograph connected to a nanospray-tandem mass spectrometer. Analysis of the data resulted in 120 proteins being identified by two or more unique peptide sequences. Of these 120 proteins, 71% are membrane associated proteins with the remainder being cytoplasmic or secreted proteins. Only 15 of the proteins identified in the cow MFGM were the same as proteins identified in previous mouse or human MFGM proteomic studies. Thus, the bulk of the proteins identified are new for bovine MFGM proteomics. The proteins identified were associated with membrane/protein trafficking (23%), cell signalling (23%), unknown functions (21%), fat transport/metabolism (11%), transport (9%), protein synthesis/folding (7%), immune proteins (4%) and milk proteins (2%). The proteins associated with cell signalling or membrane/protein trafficking may provide insights into MFGM secretion mechanisms. The finding of CD14, toll like receptor (TLR2), and TLR4 on MFGM suggests a direct role for the mammary gland in detecting an infection.
                Bookmark

                Author and article information

                Contributors
                Journal
                BMC Vet Res
                BMC Vet. Res
                BMC Veterinary Research
                BioMed Central
                1746-6148
                2014
                5 April 2014
                : 10
                : 85
                Affiliations
                [1 ]Department of Animal Science, Universidad de Las Palmas de Gran Canaria, Arucas, Gran Canaria, Spain
                [2 ]Instituto de Tecnología Química e Biologica, Universidade Nova de Lisboa, Oeiras, Portugal
                [3 ]Instituto de Investigação Científica Tropical (IICT) & Centro Interdisciplinar de Investigação em Sanidade Animal (CIISA), Lisbon, Portugal
                [4 ]Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
                Article
                1746-6148-10-85
                10.1186/1746-6148-10-85
                4108057
                24708841
                7835b189-1ca2-4366-8d6c-fd241576118c
                Copyright © 2014 Hernández-Castellano et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 31 October 2013
                : 26 March 2014
                Categories
                Research Article

                Veterinary medicine
                Veterinary medicine

                Comments

                Comment on this article