10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The metabolic fate of dietary polyphenols in humans.

      Free Radical Biology & Medicine
      Adult, Biological Availability, Biotransformation, Chromatography, High Pressure Liquid, Diet, Female, Flavonoids, Glucuronides, metabolism, Humans, Intestinal Absorption, Liver, Male, Mass Spectrometry, Middle Aged, Phenols, Polymers, Polyphenols

      Read this article at

      ScienceOpenPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Dietary polyphenols are widely considered to contribute to health benefits in humans. However, little is yet known concerning their bioactive forms in vivo and the mechanisms by which they may contribute toward disease prevention. Although many studies are focusing on the bioavailability of polyphenols through studying their uptake and the excretion of their conjugated forms, few are emphasizing the occurrence of metabolites in vivo formed via degradation by the enzymes of colonic bacteria and subsequent absorption. The purpose of this research was to investigate the relationship between biomarkers of the colonic biotransformation of ingested dietary polyphenols and the absorbed conjugated polyphenols. The results show that the majority of the in vivo forms derive from cleavage products of the action of colonic bacterial enzymes and subsequent metabolism in the liver. Those include the glucuronides of 3-hydroxyphenylacetic, homovanillic, vanillic and isoferulic acid as well as 3-(3-methoxy-4-hydroxyphenyl)-propionic, 3-(3-hydroxyphenyl)-propionic acid, and 3-hydroxyhippuric acid. In contrast, intact conjugated polyphenols themselves, such as the glucuronides of quercetin, naringenin and ferulic, p-coumaric, and sinapic acid were detected at much lower levels. The results suggest that consideration should be given to the cleavage products as having a putative role as physiologically relevant bioactive components in vivo.

          Related collections

          Author and article information

          Comments

          Comment on this article