22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Choroid plexus dysfunction impairs beta-amyloid clearance in a triple transgenic mouse model of Alzheimer’s disease

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Compromised secretory function of choroid plexus (CP) and defective cerebrospinal fluid (CSF) production, along with accumulation of beta-amyloid (Aβ) peptides at the blood-CSF barrier (BCSFB), contribute to complications of Alzheimer’s disease (AD). The AD triple transgenic mouse model (3xTg-AD) at 16 month-old mimics critical hallmarks of the human disease: β-amyloid (Aβ) plaques and neurofibrillary tangles (NFT) with a temporal- and regional- specific profile. Currently, little is known about transport and metabolic responses by CP to the disrupted homeostasis of CNS Aβ in AD. This study analyzed the effects of highly-expressed AD-linked human transgenes (APP, PS1 and tau) on lateral ventricle CP function. Confocal imaging and immunohistochemistry revealed an increase only of Aβ42 isoform in epithelial cytosol and in stroma surrounding choroidal capillaries; this buildup may reflect insufficient clearance transport from CSF to blood. Still, there was increased expression, presumably compensatory, of the choroidal Aβ transporters: the low density lipoprotein receptor-related protein 1 (LRP1) and the receptor for advanced glycation end product (RAGE). A thickening of the epithelial basal membrane and greater collagen-IV deposition occurred around capillaries in CP, probably curtailing solute exchanges. Moreover, there was attenuated expression of epithelial aquaporin-1 and transthyretin (TTR) protein compared to Non-Tg mice. Collectively these findings indicate CP dysfunction hypothetically linked to increasing Aβ burden resulting in less efficient ion transport, concurrently with reduced production of CSF (less sink action on brain Aβ) and diminished secretion of TTR (less neuroprotection against cortical Aβ toxicity). The putative effects of a disabled CP-CSF system on CNS functions are discussed in the context of AD.

          Related collections

          Most cited references67

          • Record: found
          • Abstract: found
          • Article: not found

          RAGE mediates amyloid-beta peptide transport across the blood-brain barrier and accumulation in brain.

          Amyloid-beta peptide (Abeta) interacts with the vasculature to influence Abeta levels in the brain and cerebral blood flow, providing a means of amplifying the Abeta-induced cellular stress underlying neuronal dysfunction and dementia. Systemic Abeta infusion and studies in genetically manipulated mice show that Abeta interaction with receptor for advanced glycation end products (RAGE)-bearing cells in the vessel wall results in transport of Abeta across the blood-brain barrier (BBB) and expression of proinflammatory cytokines and endothelin-1 (ET-1), the latter mediating Abeta-induced vasoconstriction. Inhibition of RAGE-ligand interaction suppresses accumulation of Abeta in brain parenchyma in a mouse transgenic model. These findings suggest that vascular RAGE is a target for inhibiting pathogenic consequences of Abeta-vascular interactions, including development of cerebral amyloidosis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Two transmembrane aspartates in presenilin-1 required for presenilin endoproteolysis and gamma-secretase activity.

            Accumulation of the amyloid-beta protein (Abeta) in the cerebral cortex is an early and invariant event in the pathogenesis of Alzheimer's disease. The final step in the generation of Abeta from the beta-amyloid precursor protein is an apparently intramembranous proteolysis by the elusive gamma-secretase(s). The most common cause of familial Alzheimer's disease is mutation of the genes encoding presenilins 1 and 2, which alters gamma-secretase activity to increase the production of the highly amyloidogenic Abeta42 isoform. Moreover, deletion of presenilin-1 in mice greatly reduces gamma-secretase activity, indicating that presenilin-1 mediates most of this proteolytic event. Here we report that mutation of either of two conserved transmembrane (TM) aspartate residues in presenilin-1, Asp 257 (in TM6) and Asp 385 (in TM7), substantially reduces Abeta production and increases the amounts of the carboxy-terminal fragments of beta-amyloid precursor protein that are the substrates of gamma-secretase. We observed these effects in three different cell lines as well as in cell-free microsomes. Either of the Asp --> Ala mutations also prevented the normal endoproteolysis of presenilin-1 in the TM6 --> TM7 cytoplasmic loop. In a functional presenilin-1 variant (carrying a deletion in exon 9) that is associated with familial Alzheimer's disease and which does not require this cleavage, the Asp 385 --> Ala mutation still inhibited gamma-secretase activity. Our results indicate that the two transmembrane aspartate residues are critical for both presenilin-1 endoproteolysis and gamma-secretase activity, and suggest that presenilin 1 is either a unique diaspartyl cofactor for gamma-secretase or is itself gamma-secretase, an autoactivated intramembranous aspartyl protease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cerebral microvascular pathology in aging and Alzheimer's disease.

              The aging of the central nervous system and the development of incapacitating neurological diseases like Alzheimer's disease (AD) are generally associated with a wide range of histological and pathophysiological changes eventually leading to a compromised cognitive status. Although the diverse triggers of the neurodegenerative processes and their interactions are still the topic of extensive debate, the possible contribution of cerebrovascular deficiencies has been vigorously promoted in recent years. Various forms of cerebrovascular insufficiency such as reduced blood supply to the brain or disrupted microvascular integrity in cortical regions may occupy an initiating or intermediate position in the chain of events ending with cognitive failure. When, for example, vasoconstriction takes over a dominating role in the cerebral vessels, the perfusion rate of the brain can considerably decrease causing directly or through structural vascular damage a drop in cerebral glucose utilization. Consequently, cerebral metabolism can suffer a setback leading to neuronal damage and a concomitant suboptimal cognitive capacity. The present review focuses on the microvascular aspects of neurodegenerative processes in aging and AD with special attention to cerebral blood flow, neural metabolic changes and the abnormalities in microvascular ultrastructure. In this context, a few of the specific triggers leading to the prominent cerebrovascular pathology, as well as the potential neurological outcome of the compromised cerebral microvascular system are also going to be touched upon to a certain extent, without aiming at total comprehensiveness. Finally, a set of animal models are going to be presented that are frequently used to uncover the functional relationship between cerebrovascular factors and the damage to neural networks.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Cell Neurosci
                Front Cell Neurosci
                Front. Cell. Neurosci.
                Frontiers in Cellular Neuroscience
                Frontiers Media S.A.
                1662-5102
                06 February 2015
                2015
                : 9
                : 17
                Affiliations
                [1] 1Department of Human Anatomy, School of Medicine, University of La Laguna Tenerife, Spain
                [2] 2Institute of Neurosciences and Department of Psychiatry and Forensic Medicine, Autonomous University of Barcelona Barcelona, Spain
                [3] 3Department of Neurosurgery, Alpert Medical School at Brown University Providence, Rhode Island, USA
                [4] 4Department of Physiology, School of Medicine, University of La Laguna Tenerife, Spain
                Author notes

                Edited by: Carlos Spuch, Institute of Biomedical Research of Vigo (IBIV), Spain

                Reviewed by: Joana Angélica Loureiro, Faculdade de Engenharia da Universidade do Porto, Portugal; Carlos Gustavo Perez-Garcia, The Salk Institute, USA

                *Correspondence: Rafael Castro-Fuentes, Department of Physiology, School of Medicine, University of La Laguna, Campus de Ciencias de la Salud, E-38200, Tenerife, Canary Islands, Spain e-mail: jrcastro@ 123456ull.edu.es

                This article was submitted to the journal Frontiers in Cellular Neuroscience.

                Article
                10.3389/fncel.2015.00017
                4319477
                25705176
                78f662c5-d443-4318-b596-b3a922de4b6a
                Copyright © 2015 González-Marrero, Giménez-Llort, Johanson, Carmona-Calero, Castañeyra-Ruiz, Brito-Armas, Castañeyra Perdomo and Castro-Fuentes.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution and reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 25 September 2014
                : 12 January 2015
                Page count
                Figures: 4, Tables: 0, Equations: 0, References: 81, Pages: 10, Words: 7907
                Categories
                Neuroscience
                Original Research Article

                Neurosciences
                alzheimer disease,3xtg-ad mice,choroid plexus,dysfunction,amyloid-β,collagen-iv,transthyretin,aquaporin-1

                Comments

                Comment on this article