79
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Cation Intercalation and High Volumetric Capacitance of Two-Dimensional Titanium Carbide

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Related collections

          Most cited references8

          • Record: found
          • Abstract: found
          • Article: not found

          Laser scribing of high-performance and flexible graphene-based electrochemical capacitors.

          Although electrochemical capacitors (ECs), also known as supercapacitors or ultracapacitors, charge and discharge faster than batteries, they are still limited by low energy densities and slow rate capabilities. We used a standard LightScribe DVD optical drive to do the direct laser reduction of graphite oxide films to graphene. The produced films are mechanically robust, show high electrical conductivity (1738 siemens per meter) and specific surface area (1520 square meters per gram), and can thus be used directly as EC electrodes without the need for binders or current collectors, as is the case for conventional ECs. Devices made with these electrodes exhibit ultrahigh energy density values in different electrolytes while maintaining the high power density and excellent cycle stability of ECs. Moreover, these ECs maintain excellent electrochemical attributes under high mechanical stress and thus hold promise for high-power, flexible electronics.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Are MXenes promising anode materials for Li ion batteries? Computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X = F, OH) monolayer.

            Density functional theory (DFT) computations were performed to investigate the electronic properties and Li storage capability of Ti(3)C(2), one representative MXene (M represents transition metals, and X is either C or/and N) material, and its fluorinated and hydroxylated derivatives. The Ti(3)C(2) monolayer acts as a magnetic metal, while its derived Ti(3)C(2)F(2) and Ti(3)C(2)(OH)(2) in their stable conformations are semiconductors with small band gaps. Li adsorption forms a strong Coulomb interaction with Ti(3)C(2)-based hosts but well preserves its structural integrity. The bare Ti(3)C(2) monolayer exhibits a low barrier for Li diffusion and high Li storage capacity (up to Ti(3)C(2)Li(2) stoichiometry). The surface functionalization of F and OH blocks Li transport and decreases Li storage capacity, which should be avoided in experiments. The exceptional properties, including good electronic conductivity, fast Li diffusion, low operating voltage, and high theoretical Li storage capacity, make Ti(3)C(2) MXene a promising anode material for Li ion batteries.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors.

              Electrochemical supercapacitors can deliver high levels of electrical power and offer long operating lifetimes, but their energy storage density is too low for many important applications. Pseudocapacitive transition-metal oxides such as MnO(2) could be used to make electrodes in such supercapacitors, because they are predicted to have a high capacitance for storing electrical charge while also being inexpensive and not harmful to the environment. However, the poor conductivity of MnO(2) (10(-5)-10(-6) S cm(-1)) limits the charge/discharge rate for high-power applications. Here, we show that hybrid structures made of nanoporous gold and nanocrystalline MnO(2) have enhanced conductivity, resulting in a specific capacitance of the constituent MnO(2) (~1,145 F g(-1)) that is close to the theoretical value. The nanoporous gold allows electron transport through the MnO(2), and facilitates fast ion diffusion between the MnO(2) and the electrolytes while also acting as a double-layer capacitor. The high specific capacitances and charge/discharge rates offered by such hybrid structures make them promising candidates as electrodes in supercapacitors, combining high-energy storage densities with high levels of power delivery.
                Bookmark

                Author and article information

                Journal
                Science
                Science
                American Association for the Advancement of Science (AAAS)
                0036-8075
                1095-9203
                September 26 2013
                September 26 2013
                : 341
                : 6153
                : 1502-1505
                Article
                10.1126/science.1241488
                24072919
                793c9925-686b-4a48-a4b6-cf0ec7b4fa27
                © 2013
                History

                Comments

                Comment on this article