81
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      High resolution melting analysis for rapid and sensitive EGFR and KRAS mutation detection in formalin fixed paraffin embedded biopsies

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Epithelial growth factor receptor ( EGFR) and KRAS mutation status have been reported as predictive markers of tumour response to EGFR inhibitors. High resolution melting (HRM) analysis is an attractive screening method for the detection of both known and unknown mutations as it is rapid to set up and inexpensive to operate. However, up to now it has not been fully validated for clinical samples when formalin-fixed paraffin-embedded (FFPE) sections are the only material available for analysis as is often the case.

          Methods

          We developed HRM assays, optimised for the analysis of FFPE tissues, to detect somatic mutations in EGFR exons 18 to 21. We performed HRM analysis for EGFR and KRAS on DNA isolated from a panel of 200 non-small cell lung cancer (NSCLC) samples derived from FFPE tissues.

          Results

          All 73 samples that harboured EGFR mutations previously identified by sequencing were correctly identified by HRM, giving 100% sensitivity with 90% specificity. Twenty five samples were positive by HRM for KRAS exon 2 mutations. Sequencing of these 25 samples confirmed the presence of codon 12 or 13 mutations. EGFR and KRAS mutations were mutually exclusive.

          Conclusion

          This is the first extensive validation of HRM on FFPE samples using the detection of EGFR exons 18 to 21 mutations and KRAS exon 2 mutations. Our results demonstrate the utility of HRM analysis for the detection of somatic EGFR and KRAS mutations in clinical samples and for screening of samples prior to sequencing. We estimate that by using HRM as a screening method, the number of sequencing reactions needed for EGFR and KRAS mutation detection can be reduced by up to 80% and thus result in substantial time and cost savings.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          EGF receptor gene mutations are common in lung cancers from "never smokers" and are associated with sensitivity of tumors to gefitinib and erlotinib.

          Somatic mutations in the tyrosine kinase (TK) domain of the epidermal growth factor receptor (EGFR) gene are reportedly associated with sensitivity of lung cancers to gefitinib (Iressa), kinase inhibitor. In-frame deletions occur in exon 19, whereas point mutations occur frequently in codon 858 (exon 21). We found from sequencing the EGFR TK domain that 7 of 10 gefitinib-sensitive tumors had similar types of alterations; no mutations were found in eight gefitinib-refractory tumors (P = 0.004). Five of seven tumors sensitive to erlotinib (Tarceva), a related kinase inhibitor for which the clinically relevant target is undocumented, had analogous somatic mutations, as opposed to none of 10 erlotinib-refractory tumors (P = 0.003). Because most mutation-positive tumors were adenocarcinomas from patients who smoked <100 cigarettes in a lifetime ("never smokers"), we screened EGFR exons 2-28 in 15 adenocarcinomas resected from untreated never smokers. Seven tumors had TK domain mutations, in contrast to 4 of 81 non-small cell lung cancers resected from untreated former or current smokers (P = 0.0001). Immunoblotting of lysates from cells transiently transfected with various EGFR constructs demonstrated that, compared to wild-type protein, an exon 19 deletion mutant induced diminished levels of phosphotyrosine, whereas the phosphorylation at tyrosine 1092 of an exon 21 point mutant was inhibited at 10-fold lower concentrations of drug. Collectively, these data show that adenocarcinomas from never smokers comprise a distinct subset of lung cancers, frequently containing mutations within the TK domain of EGFR that are associated with gefitinib and erlotinib sensitivity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Clinical and biological features associated with epidermal growth factor receptor gene mutations in lung cancers.

            Mutations in the tyrosine kinase (TK) domain of the epidermal growth factor receptor (EGFR) gene in lung cancers are associated with increased sensitivity of these cancers to drugs that inhibit EGFR kinase activity. However, the role of such mutations in the pathogenesis of lung cancers is unclear. We sequenced exons 18-21 of the EGFR TK domain from genomic DNA isolated from 617 non-small-cell lung cancers (NSCLCs) and 524 normal lung tissue samples from the same patients and 36 neuroendocrine lung tumors collected from patients in Japan, Taiwan, the United States, and Australia and from 243 other epithelial cancers. Mutation status was compared with clinicopathologic features and with the presence of mutations in KRAS, a gene in the EGFR signaling pathway that is also frequently mutated in lung cancers. All statistical tests were two sided. We detected a total of 134 EGFR TK domain mutations in 130 (21%) of the 617 NSCLCs but not in any of the other carcinomas, nor in nonmalignant lung tissue from the same patients. In NSCLC patients, EGFR TK domain mutations were statistically significantly more frequent in never smokers than ever smokers (51% versus 10%), in adenocarcinomas versus cancer of other histologies (40% versus 3%), in patients of East Asian ethnicity versus other ethnicities (30% versus 8%), and in females versus males (42% versus 14%; all P < .001). EGFR TK domain mutation status was not associated with patient age at diagnosis, clinical stage, the presence of bronchioloalveolar histologic features, or overall survival. The EGFR TK domain mutations we detected were of three common types: in-frame deletions in exon 19, single missense mutations in exon 21, and in-frame duplications/insertions in exon 20. Rare missense mutations were also detected in exons 18, 20, and 21. KRAS gene mutations were present in 50 (8%) of the 617 NSCLCs but not in any tumors with an EGFR TK domain mutation. Mutations in either the EGFR TK domain or the KRAS gene can lead to lung cancer pathogenesis. EGFR TK domain mutations are the first molecular change known to occur specifically in never smokers.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mutations of the epidermal growth factor receptor gene in lung cancer: biological and clinical implications.

              Recently it has been reported that mutations in the tyrosine kinase domain of the epidermal growth factor receptor(EGFR) gene occur in a subset of patients with lung cancer showing a dramatic response to EGFR tyrosine kinase inhibitors. To gain further insights in the role of EGFR in lung carcinogenesis, we sequenced exons 18-21 of the tyrosine kinase domain using total RNA extracted from unselected 277 patients with lung cancer who underwent surgical resection and correlated the results with clinical and pathologic features. EGFR mutations were present in 111 patients (40%). Fifty-two were in-frame deletions around codons 746-750 in exon 19, 54 were point mutations including 49 at codon 858 in exon 21 and 4 at codon 719 in exon 18, and 5 were duplications/insertions mainly in exon 20. They were significantly more frequent in female (P < 0.001), adenocarcinomas (P = 0.0013), and in never-smokers (P < 0.001). Multivariate analysis suggested EGFR mutations were independently associated with adenocarcinoma histology (P = 0.0012) and smoking status (P < 0.001), but not with female gender (P = 0.9917). In adenocarcinomas, EGFR mutations were more frequent in well to moderately differentiated tumors (P < 0.001) but were independent of patient age, disease stages, or patient survival. KRAS and TP53 mutations were present in 13 and 41%, respectively. EGFR mutations never occurred in tumors with KRAS mutations, whereas EGFR mutations were independent of TP53 mutations. EGFR mutations define a distinct subset of pulmonary adenocarcinoma without KRAS mutations, which is not caused by tobacco carcinogens.
                Bookmark

                Author and article information

                Journal
                BMC Cancer
                BMC Cancer
                BioMed Central
                1471-2407
                2008
                21 May 2008
                : 8
                : 142
                Affiliations
                [1 ]Molecular Pathology Research and Development Laboratory, Department of Pathology, Peter MacCallum Cancer Centre, Locked Bag 1, A'Beckett St, Melbourne, Victoria 8006, Australia
                [2 ]Department of Pathology, University of Melbourne, Parkville, Victoria, 3010, Australia
                [3 ]Ludwig Medical Oncology Department, Austin Hospital, Heidelberg, Victoria, 3084, Australia
                Article
                1471-2407-8-142
                10.1186/1471-2407-8-142
                2408599
                18495026
                799265bd-79a7-41e6-8e38-54fffc3a5ae6
                Copyright © 2008 Do et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 6 February 2008
                : 21 May 2008
                Categories
                Research Article

                Oncology & Radiotherapy
                Oncology & Radiotherapy

                Comments

                Comment on this article