4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      ZnO Nanoparticles Obtained by Green Synthesis as an Alternative to Improve the Germination Characteristics of L. esculentum

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Tomato is an important crop due to its nutritional contributions and organoleptic properties, which make it an appetizing vegetable around the world. In its sowing, the use of seed is the most accessible propagation mechanism for farmers. However, the induction to germination and emergence is often limited in the absence of stimulants that promote the development and growth of the seedling, added to the interference of infectious agents that notoriously reduce the vitality and viability of the seed. Given this, it was proposed as a research objective to determine the effect of zinc oxide nanoparticles (ZnO NPs) mediated by a green route on the germinative characteristics of Lycopersicon esculentum Mill. 1768 “tomato”. The experimental phase consisted of the synthesis of ZnO NPs and its subsequent characterization. After its synthesis, its inoculation was conducted during the germination of seeds of L. esculentum, considering six sample groups for the treatment with zinc nanoparticles (T1: Control; T2: 21.31 ppm; T3: 33.58 ppm; T4: 49.15 ppm; T5: 63.59 and T6: 99.076 ppm). The results indicate that concentrations close to 100 ppm of ZnO NPs are ideal in the treatment of L. esculentum seeds, due to the promotion of enzymatic and metabolic activity to achieve cell elongation; likewise, the biosynthesized nanoparticles showed no phytotoxicity, due to the fact that, in all the treatments, there were processes of germination and emergence. This was linked to the generation of a Zn0-phenolate complex through a chelating effect, which generates compatibility with the seed and, compared to classic inorganic synthesis, usually shows phytotoxicity. In this sense, green synthesis is presented as a great alternative in this type of application.

          Related collections

          Most cited references56

          • Record: found
          • Abstract: not found
          • Article: not found

          In Vitro Cytotoxicity of Oxide Nanoparticles:  Comparison to Asbestos, Silica, and the Effect of Particle Solubility†

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Green synthesis of silver nanoparticles using Andean blackberry fruit extract

            Green synthesis of nanoparticles using various plant materials opens a new scope for the phytochemist and discourages the use of toxic chemicals. In this article, we report an eco-friendly and low-cost method for the synthesis of silver nanoparticles (AgNPs) using Andean blackberry fruit extracts as both a reducing and capping agent. The green synthesized AgNPs were characterized by various analytical instruments like UV–visible, transmission electron microscopy (TEM), dynamic light scattering (DLS), X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. The formation of AgNPs was analyzed by UV–vis spectroscopy at λ max = 435 nm. TEM analysis of AgNPs showed the formation of a crystalline, spherical shape and 12–50 nm size, whereas XRD peaks at 38.04°, 44.06°, 64.34° and 77.17° confirmed the crystalline nature of AgNPs. FTIR analysis was done to identify the functional groups responsible for the synthesis of the AgNPs. Furthermore, it was found that the AgNPs showed good antioxidant efficacy (>78%, 0.1 mM) against 1,1-diphenyl-2-picrylhydrazyl. The process of synthesis is environmentally compatible and the synthesized AgNPs could be a promising candidate for many biomedical applications.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Nanoparticle-Mediated Seed Priming Improves Germination, Growth, Yield, and Quality of Watermelons ( Citrullus lanatus ) at multi-locations in Texas

              Seed priming uses treatments to improve seed germination and thus potentially increase growth and yield. Low-cost, environmentally friendly, effective seed treatment remain to be optimized and tested for high-value specialty crop like watermelon (Citrullus lanatus) in multi-locations. This remains a particularly acute problem for triploids, which produce desirable seedless watermelons, but show low germination rates. In the present study, turmeric oil nanoemulsions (TNE) and silver nanoparticles (AgNPs) synthesized from agro-industrial byproducts were used as nanopriming agents for diploid (Riverside) and triploid (Maxima) watermelon seeds. Internalization of nanomaterials was confirmed by neutron activation analysis, transmission electron microscopy, and gas chromatography-mass spectrometry. The seedling emergence rate at 14 days after sowing was significantly higher in AgNP-treated triploid seeds compared to other treatments. Soluble sugar (glucose and fructose) contents were enhanced during germination in the AgNP-treated seeds at 96 h. Seedlings grown in the greenhouse were transplanted at four locations in Texas: Edinburg, Pecos, Grapeland, and Snook in 2017. At Snook, higher yield 31.6% and 35.6% compared to control were observed in AgNP-treated Riverside and Maxima watermelons, respectively. To validate the first-year results, treated and untreated seeds of both cultivars were sown in Weslaco, Texas in 2018. While seed emegence and stand establishments were enhanced by seed priming, total phenolics radical-scavenging activities, and macro- and microelements in the watermelon fruits were not significantly different from the control. The results of the present study demonstracted that seed priming with AgNPs can enhance seed germination, growth, and yield while maintaining fruit quality through an eco-friendly and sustainable nanotechnological approach.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                MOLEFW
                Molecules
                Molecules
                MDPI AG
                1420-3049
                April 2022
                April 06 2022
                : 27
                : 7
                : 2343
                Article
                10.3390/molecules27072343
                7ab6be5e-4d68-443b-a4a8-a7d0c67c5594
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article