25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The Pathogenic Role of Macrophage Migration Inhibitory Factor in Immunologically Induced Kidney Disease in the Rat

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Macrophage migration inhibitory factor (MIF) plays a pivotal role in the inflammatory response in endotoxemia and in the delayed-type hypersensitivity response, but its potential as a regulator of immunologically induced disease is unknown. We have addressed this issue by administering a neutralizing anti-MIF antibody in a rat model of immunologically induced crescentic anti-glomerular basement membrane (GBM) glomerulonephritis. Six individual experiments using paired inbred littermates were performed. Rats were primed with rabbit immunoglobulin on day −5 and then injection with rabbit anti–rat GBM serum on day 0. Pairs of animals were treated with anti-MIF or a control monoclonal antibody from the time of anti-GBM serum administration until being killed 14 d later. Control antibody-treated animals developed severe proteinuria and renal function impairment with severe histological damage due to marked leukocytic infiltration and activation within the kidney. In contrast, anti-MIF treatment substantially reduced proteinuria, prevented the loss of renal function, significantly reduced histological damage including glomerular crescent formation, and substantially inhibited renal leukocytic infiltration and activation (all P <0.001 compared with control treatment). Inhibition of renal disease by anti-MIF treatment was attributed to preventing the marked upregulation of interleukin-1β, leukocyte adhesion molecules including intercellular adhesion molecule-1 and vascular cell adhesion molecule-1, and inducible nitric oxide synthase expression seen in the control antibody-treated animals. This inhibition of progressive renal injury was mirrored by the complete suppression of the skin delayed-type hypersensitivity response to the challenge antigen (rabbit IgG). Interestingly, anti-MIF treatment did not effect the secondary antibody response or immune deposition within the kidney, indicating that MIF participates in cellular-based immunity in this primed macrophage-dependent anti-GBM glomerulonephritis. In conclusion, this study has demonstrated a key regulatory role for MIF in the pathogenesis of immunologically induced kidney disease. These results argue that blocking MIF activity may be of benefit in the treatment of human rapidly progressive glomerulonephritis, and suggest that MIF may be important in immune-mediated disease generally.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: not found
          • Article: not found

          Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mechanism of a reaction in vitro associated with delayed-type hypersensitivity.

            The cell type responsible for inhibition by antigen of migration in vitro of peritoneal exudate cells obtained from tuberculin-hypersensitive guinea pigs was studied. Exudate populations were separated into component cell types, the lymphocyte and the macrophage. Peritoneal lymphocytes from sensitive donors were the immunologically active cells in this system, the macrophages, being merely indicator cells which migrate. Sensitized peritoneal lymphocyte populations, upon interaction with specific antigen in vitro, elaborated into the medium a soluble material capable of inhibiting migration of normal exudate cells.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              MIF as a glucocorticoid-induced modulator of cytokine production.

              Glucocorticoid hormones are important for vital functions and act to modulate inflammatory and immune responses. Yet, in contrast to other hormonal systems, no endogenous mediators have been identified that can directly counter-regulate their potent anti-inflammatory and immunosuppressive properties. Recent investigations of the protein macrophage migration inhibitory factor (MIF), which was discovered originally to be a T-lymphocyte-derived factor, have established it to be a pro-inflammatory pituitary and macrophage cytokine and a critical mediator of septic shock. Here we report the unexpected finding that low concentrations of glucocorticoids induce rather than inhibit MIF production from macrophages. MIF then acts to override glucocorticoid-mediated inhibition of cytokine secretion by lipopolysaccharide (LPS)-stimulated monocytes and to overcome glucocorticoid protection against lethal endotoxaemia. These observations identify a unique counter-regulatory system that functions to control inflammatory and immune responses.
                Bookmark

                Author and article information

                Journal
                J Exp Med
                The Journal of Experimental Medicine
                The Rockefeller University Press
                0022-1007
                1540-9538
                21 April 1997
                : 185
                : 8
                : 1455-1466
                Affiliations
                From the [* ]Department of Nephrology and [§ ]the Institute for Reproduction and Development, Monash Medical Centre, Clayton, Victoria 3168, Australia; []Picower Institute for Medical Research, Manhasset, New York 11030
                Author notes

                Address correspondence to Hui Y. Lan, Department of Nephrology, Monash Medical Centre, 246 Clayton Road, Clayton, Victoria 3168, Australia.

                Article
                10.1084/jem.185.8.1455
                2196273
                9126926
                7af58b8c-cfe3-46c1-8e73-7a0de1b7d666
                Copyright @ 1997
                History
                : 12 December 1996
                : 19 February 1997
                Categories
                Article

                Medicine
                Medicine

                Comments

                Comment on this article