2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Tantalum (oxy)nitride based photoanodes for solar-driven water oxidation

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The recent development of tantalum (oxy)nitride based photoanodes is summarized and their future trends are also discussed.

          Photoelectrochemical (PEC) water splitting is a very promising process to produce hydrogen as a clean energy carrier. To achieve 10% solar to hydrogen (STH) conversion efficiency required for practical applications, the current central task in PEC water splitting is the development of efficient photoelectrodes, particularly photoanodes for water oxidation, used in PEC cells. Tantalum (oxy)nitrides with bandgaps ranging from 2.5 to 1.9 eV, corresponding to theoretical STH efficiencies varying from 9.3% to 20.9%, are considered a class of attractive light adsorbers for use in photoanodes for PEC water oxidation and have attracted much recent research attention. In this review, the recent development of tantalum (oxy)nitride photoanodes is summarized. Special interest is focused on the synthesis methods of tantalum (oxy)nitride films and important approaches for improving PEC conversion efficiency and stability of these films as photoanodes. The future trends of tantalum (oxy)nitride based photoanodes are also discussed.

          Related collections

          Most cited references99

          • Record: found
          • Abstract: found
          • Article: not found

          An advanced Ni-Fe layered double hydroxide electrocatalyst for water oxidation.

          Highly active, durable, and cost-effective electrocatalysts for water oxidation to evolve oxygen gas hold a key to a range of renewable energy solutions, including water-splitting and rechargeable metal-air batteries. Here, we report the synthesis of ultrathin nickel-iron layered double hydroxide (NiFe-LDH) nanoplates on mildly oxidized multiwalled carbon nanotubes (CNTs). Incorporation of Fe into the nickel hydroxide induced the formation of NiFe-LDH. The crystalline NiFe-LDH phase in nanoplate form is found to be highly active for oxygen evolution reaction in alkaline solutions. For NiFe-LDH grown on a network of CNTs, the resulting NiFe-LDH/CNT complex exhibits higher electrocatalytic activity and stability for oxygen evolution than commercial precious metal Ir catalysts.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts.

            We describe the development of solar water-splitting cells comprising earth-abundant elements that operate in near-neutral pH conditions, both with and without connecting wires. The cells consist of a triple junction, amorphous silicon photovoltaic interfaced to hydrogen- and oxygen-evolving catalysts made from an alloy of earth-abundant metals and a cobalt|borate catalyst, respectively. The devices described here carry out the solar-driven water-splitting reaction at efficiencies of 4.7% for a wired configuration and 2.5% for a wireless configuration when illuminated with 1 sun (100 milliwatts per square centimeter) of air mass 1.5 simulated sunlight. Fuel-forming catalysts interfaced with light-harvesting semiconductors afford a pathway to direct solar-to-fuels conversion that captures many of the basic functional elements of a leaf.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode.

              Metal oxides are generally very stable in aqueous solutions and cheap, but their photochemical activity is usually limited by poor charge carrier separation. Here we show that this problem can be solved by introducing a gradient dopant concentration in the metal oxide film, thereby creating a distributed n(+)-n homojunction. This concept is demonstrated with a low-cost, spray-deposited and non-porous tungsten-doped bismuth vanadate photoanode in which carrier-separation efficiencies of up to 80% are achieved. By combining this state-of-the-art photoanode with an earth-abundant cobalt phosphate water-oxidation catalyst and a double- or single-junction amorphous Si solar cell in a tandem configuration, stable short-circuit water-splitting photocurrents of ~4 and 3 mA cm(-2), respectively, are achieved under 1 sun illumination. The 4 mA cm(-2) photocurrent corresponds to a solar-to-hydrogen efficiency of 4.9%, which is the highest efficiency yet reported for a stand-alone water-splitting device based on a metal oxide photoanode.
                Bookmark

                Author and article information

                Journal
                JMCAET
                Journal of Materials Chemistry A
                J. Mater. Chem. A
                Royal Society of Chemistry (RSC)
                2050-7488
                2050-7496
                2016
                2016
                : 4
                : 8
                : 2783-2800
                Article
                10.1039/C5TA07057K
                7b064aac-c38e-4ac9-ba68-5c46574e2514
                © 2016
                History

                Comments

                Comment on this article