49
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genome-Wide Discovery of Genes Required for Capsule Production by Uropathogenic Escherichia coli

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          Uropathogenic Escherichia coli (UPEC) is a major cause of urinary tract and bloodstream infections and possesses an array of virulence factors for colonization, survival, and persistence. One such factor is the polysaccharide K capsule. Among the different K capsule types, the K1 serotype is strongly associated with UPEC infection. In this study, we completely sequenced the K1 UPEC urosepsis strain PA45B and employed a novel combination of a lytic K1 capsule-specific phage, saturated Tn 5 transposon mutagenesis, and high-throughput transposon-directed insertion site sequencing (TraDIS) to identify the complement of genes required for capsule production. Our analysis identified known genes involved in capsule biosynthesis, as well as two additional regulatory genes ( mprA and lrhA) that we characterized at the molecular level. Mutation of mprA resulted in protection against K1 phage-mediated killing, a phenotype restored by complementation. We also identified a significantly increased unidirectional Tn 5 insertion frequency upstream of the lrhA gene and showed that strong expression of LrhA induced by a constitutive Pcl promoter led to loss of capsule production. Further analysis revealed loss of MprA or overexpression of LrhA affected the transcription of capsule biosynthesis genes in PA45B and increased sensitivity to killing in whole blood. Similar phenotypes were also observed in UPEC strains UTI89 (K1) and CFT073 (K2), demonstrating that the effects were neither strain nor capsule type specific. Overall, this study defined the genome of a UPEC urosepsis isolate and identified and characterized two new regulatory factors that affect UPEC capsule production.

          IMPORTANCE

          Urinary tract infections (UTIs) are among the most common bacterial infections in humans and are primarily caused by uropathogenic Escherichia coli (UPEC). Many UPEC strains express a polysaccharide K capsule that provides protection against host innate immune factors and contributes to survival and persistence during infection. The K1 serotype is one example of a polysaccharide capsule type and is strongly associated with UPEC strains that cause UTIs, bloodstream infections, and meningitis. The number of UTIs caused by antibiotic-resistant UPEC is steadily increasing, highlighting the need to better understand factors (e.g., the capsule) that contribute to UPEC pathogenesis. This study describes the original and novel application of lytic capsule-specific phage killing, saturated Tn 5 transposon mutagenesis, and high-throughput transposon-directed insertion site sequencing to define the entire complement of genes required for capsule production in UPEC. Our comprehensive approach uncovered new genes involved in the regulation of this key virulence determinant.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: not found
          • Article: not found

          Artemis: sequence visualization and annotation

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Identification of Klebsiella capsule synthesis loci from whole genome data

            Klebsiella pneumoniae is a growing cause of healthcare-associated infections for which multi-drug resistance is a concern. Its polysaccharide capsule is a major virulence determinant and epidemiological marker. However, little is known about capsule epidemiology since serological typing is not widely accessible and many isolates are serologically non-typeable. Molecular typing techniques provide useful insights, but existing methods fail to take full advantage of the information in whole genome sequences. We investigated the diversity of the capsule synthesis loci (K-loci) among 2503 K . pneumoniae genomes. We incorporated analyses of full-length K-locus nucleotide sequences and also clustered protein-encoding sequences to identify, annotate and compare K-locus structures. We propose a standardized nomenclature for K-loci and present a curated reference database. A total of 134 distinct K-loci were identified, including 31 novel types. Comparative analyses indicated 508 unique protein-encoding gene clusters that appear to reassort via homologous recombination. Extensive intra- and inter-locus nucleotide diversity was detected among the wzi and wzc genes, indicating that current molecular typing schemes based on these genes are inadequate. As a solution, we introduce Kaptive, a novel software tool that automates the process of identifying K-loci based on full locus information extracted from whole genome sequences (https://github.com/katholt/Kaptive). This work highlights the extensive diversity of Klebsiella K-loci and the proteins that they encode. The nomenclature, reference database and novel typing method presented here will become essential resources for genomic surveillance and epidemiological investigations of this pathogen.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Global dissemination of a multidrug resistant Escherichia coli clone.

              Escherichia coli sequence type 131 (ST131) is a globally disseminated, multidrug resistant (MDR) clone responsible for a high proportion of urinary tract and bloodstream infections. The rapid emergence and successful spread of E. coli ST131 is strongly associated with several factors, including resistance to fluoroquinolones, high virulence gene content, the possession of the type 1 fimbriae FimH30 allele, and the production of the CTX-M-15 extended spectrum β-lactamase (ESBL). Here, we used genome sequencing to examine the molecular epidemiology of a collection of E. coli ST131 strains isolated from six distinct geographical locations across the world spanning 2000-2011. The global phylogeny of E. coli ST131, determined from whole-genome sequence data, revealed a single lineage of E. coli ST131 distinct from other extraintestinal E. coli strains within the B2 phylogroup. Three closely related E. coli ST131 sublineages were identified, with little association to geographic origin. The majority of single-nucleotide variants associated with each of the sublineages were due to recombination in regions adjacent to mobile genetic elements (MGEs). The most prevalent sublineage of ST131 strains was characterized by fluoroquinolone resistance, and a distinct virulence factor and MGE profile. Four different variants of the CTX-M ESBL-resistance gene were identified in our ST131 strains, with acquisition of CTX-M-15 representing a defining feature of a discrete but geographically dispersed ST131 sublineage. This study confirms the global dispersal of a single E. coli ST131 clone and demonstrates the role of MGEs and recombination in the evolution of this important MDR pathogen.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                mBio
                MBio
                mbio
                mbio
                mBio
                mBio
                American Society for Microbiology (1752 N St., N.W., Washington, DC )
                2150-7511
                24 October 2017
                Sep-Oct 2017
                : 8
                : 5
                : e01558-17
                Affiliations
                [a ]School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
                [b ]Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland, Australia
                [c ]Australian Centre for Ecogenomics, University of Queensland, Brisbane, Queensland, Australia
                [d ]Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
                [e ]School of Medical Science and Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
                [f ]Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
                Washington University School of Medicine
                Author notes
                Address correspondence to Mark A. Schembri, m.schembri@ 123456uq.edu.au .

                This article is a direct contribution from a Fellow of the American Academy of Microbiology. Solicited external reviewers: Harry Mobley, University of Michigan; Jay Hinton, University of Liverpool.

                Author information
                http://orcid.org/0000-0002-3426-1044
                http://orcid.org/0000-0002-1883-1115
                http://orcid.org/0000-0002-9638-8091
                http://orcid.org/0000-0002-0406-8139
                http://orcid.org/0000-0002-1806-3283
                http://orcid.org/0000-0003-4863-9260
                Article
                mBio01558-17
                10.1128/mBio.01558-17
                5654933
                29066548
                7b1cfe8f-4576-43e3-946a-a87b109cfe3b
                Copyright © 2017 Goh et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.

                History
                : 6 September 2017
                : 11 September 2017
                Page count
                supplementary-material: 6, Figures: 8, Tables: 1, Equations: 0, References: 71, Pages: 16, Words: 11767
                Categories
                Research Article
                Custom metadata
                September/October 2017

                Life sciences
                bacteriophages,capsule,molecular genetics,regulation of gene expression,sepsis,urinary tract infection,uropathogenic,e. coli,virulence

                Comments

                Comment on this article