79
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Pangenome and immuno -proteomics analysis of Acinetobacter baumannii strains revealed the core peptide vaccine targets

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Acinetobacter baumannii has emerged as a significant nosocomial pathogen during the last few years, exhibiting resistance to almost all major classes of antibiotics. Alternative treatment options such as vaccines tend to be most promising and cost effective approaches against this resistant pathogen. In the current study, we have explored the pan-genome of A. baumannii followed by immune-proteomics and reverse vaccinology approaches to identify potential core vaccine targets.

          Results

          The pan-genome of all available A. baumannii strains (30 complete genomes) is estimated to contain 7,606 gene families and the core genome consists of 2,445 gene families (~32 % of the pan-genome). Phylogenetic tree, comparative genomic and proteomic analysis revealed both intra- and inter genomic similarities and evolutionary relationships. Among the conserved core genome, thirteen proteins, including P pilus assembly protein, pili assembly chaperone, AdeK, PonA, OmpA, general secretion pathway protein D, FhuE receptor, Type VI secretion system OmpA/MotB, TonB dependent siderophore receptor, general secretion pathway protein D, outer membrane protein, peptidoglycan associated lipoprotein and peptidyl-prolyl cis-trans isomerase are identified as highly antigenic. Epitope mapping of the target proteins revealed the presence of antigenic surface exposed 9-mer T-cell epitopes. Protein-protein interaction and functional annotation have shown their involvement in significant biological and molecular processes. The pipeline is validated by predicting already known immunogenic targets against Gram negative pathogen Helicobacter pylori as a positive control.

          Conclusion

          The study, based upon combinatorial approach of pan-genomics, core genomics, proteomics and reverse vaccinology led us to find out potential vaccine candidates against A. baumannii. The comprehensive analysis of all the completely sequenced genomes revealed thirteen putative antigens which could elicit substantial immune response. The integration of computational vaccinology strategies would facilitate in tackling the rapid dissemination of resistant A.baumannii strains. The scarcity of effective antibiotics and the global expansion of sequencing data making this approach desirable in the development of effective vaccines against A. baumannii and other bacterial pathogens.

          Electronic supplementary material

          The online version of this article (doi:10.1186/s12864-016-2951-4) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references103

          • Record: found
          • Abstract: found
          • Article: not found

          Antibiotic resistance-the need for global solutions.

          The causes of antibiotic resistance are complex and include human behaviour at many levels of society; the consequences affect everybody in the world. Similarities with climate change are evident. Many efforts have been made to describe the many different facets of antibiotic resistance and the interventions needed to meet the challenge. However, coordinated action is largely absent, especially at the political level, both nationally and internationally. Antibiotics paved the way for unprecedented medical and societal developments, and are today indispensible in all health systems. Achievements in modern medicine, such as major surgery, organ transplantation, treatment of preterm babies, and cancer chemotherapy, which we today take for granted, would not be possible without access to effective treatment for bacterial infections. Within just a few years, we might be faced with dire setbacks, medically, socially, and economically, unless real and unprecedented global coordinated actions are immediately taken. Here, we describe the global situation of antibiotic resistance, its major causes and consequences, and identify key areas in which action is urgently needed. Copyright © 2013 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The microbial pan-genome.

            A decade after the beginning of the genomic era, the question of how genomics can describe a bacterial species has not been fully addressed. Experimental data have shown that in some species new genes are discovered even after sequencing the genomes of several strains. Mathematical modeling predicts that new genes will be discovered even after sequencing hundreds of genomes per species. Therefore, a bacterial species can be described by its pan-genome, which is composed of a "core genome" containing genes present in all strains, and a "dispensable genome" containing genes present in two or more strains and genes unique to single strains. Given that the number of unique genes is vast, the pan-genome of a bacterial species might be orders of magnitude larger than any single genome.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats

              Background In Archeae and Bacteria, the repeated elements called CRISPRs for "clustered regularly interspaced short palindromic repeats" are believed to participate in the defence against viruses. Short sequences called spacers are stored in-between repeated elements. In the current model, motifs comprising spacers and repeats may target an invading DNA and lead to its degradation through a proposed mechanism similar to RNA interference. Analysis of intra-species polymorphism shows that new motifs (one spacer and one repeated element) are added in a polarised fashion. Although their principal characteristics have been described, a lot remains to be discovered on the way CRISPRs are created and evolve. As new genome sequences become available it appears necessary to develop automated scanning tools to make available CRISPRs related information and to facilitate additional investigations. Description We have produced a program, CRISPRFinder, which identifies CRISPRs and extracts the repeated and unique sequences. Using this software, a database is constructed which is automatically updated monthly from newly released genome sequences. Additional tools were created to allow the alignment of flanking sequences in search for similarities between different loci and to build dictionaries of unique sequences. To date, almost six hundred CRISPRs have been identified in 475 published genomes. Two Archeae out of thirty-seven and about half of Bacteria do not possess a CRISPR. Fine analysis of repeated sequences strongly supports the current view that new motifs are added at one end of the CRISPR adjacent to the putative promoter. Conclusion It is hoped that availability of a public database, regularly updated and which can be queried on the web will help in further dissecting and understanding CRISPR structure and flanking sequences evolution. Subsequent analyses of the intra-species CRISPR polymorphism will be facilitated by CRISPRFinder and the dictionary creator. CRISPRdb is accessible at
                Bookmark

                Author and article information

                Contributors
                afreenish.hassan@yahoo.com
                anam.naz88@live.com
                ayesha_obaid_nust@live.com
                rehanzfr@gmail.com
                kanwal.naz03@gmail.com
                faryal_mehwish@yahoo.com
                aunmuhammad78@yahoo.com
                janjua.hussnain@gmail.com
                dr.ahmad.jamil@gmail.com
                amjaduni@gmail.com
                Journal
                BMC Genomics
                BMC Genomics
                BMC Genomics
                BioMed Central (London )
                1471-2164
                15 September 2016
                15 September 2016
                2016
                : 17
                : 732
                Affiliations
                [1 ]Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad, Pakistan
                [2 ]Research Center for Modeling and Simulation (RCMS), National University of Sciences and Technology (NUST), H-12, Islamabad, Pakistan
                [3 ]Department of Computer Science and Information Technology, Stratford University, Falls Church, VA 22043 USA
                [4 ]Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
                Article
                2951
                10.1186/s12864-016-2951-4
                5025611
                27634541
                7bc168fe-7a1b-4037-8036-a03e2cb6a479
                © The Author(s). 2016

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 12 February 2016
                : 19 July 2016
                Categories
                Research Article
                Custom metadata
                © The Author(s) 2016

                Genetics
                a. baumannii,pan-genome,core genome,epitopes,vaccines
                Genetics
                a. baumannii, pan-genome, core genome, epitopes, vaccines

                Comments

                Comment on this article