31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Resistance to neoadjuvant chemotherapy in triple-negative breast cancer mediated by a reversible drug-tolerant state

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Eradicating triple-negative breast cancer (TNBC) resistant to neoadjuvant chemotherapy (NACT) is a critical unmet clinical need. In this study, patient-derived xenograft (PDX) models of treatment-naïve TNBC and serial biopsies from TNBC patients undergoing NACT were used to elucidate mechanisms of chemoresistance in the neoadjuvant setting. Barcode-mediated clonal tracking and genomic sequencing of PDX tumors revealed that residual tumors remaining after treatment with standard frontline chemotherapies, doxorubicin (Adriamycin) combined with cyclophosphamide (AC), maintained the subclonal architecture of untreated tumors, yet their transcriptomes, proteomes, and histologic features were distinct from those of untreated tumors. Once treatment was halted, residual tumors gave rise to AC-sensitive tumors with similar transcriptomes, proteomes, and histological features to those of untreated tumors. Together, these results demonstrated that tumors can adopt a reversible drug-tolerant state that does not involve clonal selection as an AC resistance mechanism. Serial biopsies obtained from patients with TNBC undergoing NACT revealed similar histologic changes and maintenance of stable subclonal architecture, demonstrating that AC-treated PDXs capture molecular features characteristic of human TNBC chemoresistance. Last, pharmacologic inhibition of oxidative phosphorylation using an inhibitor currently in phase 1 clinical development delayed residual tumor regrowth. Thus, AC resistance in treatment-naïve TNBC can be mediated by nonselective mechanisms that confer a reversible chemotherapy-tolerant state with targetable vulnerabilities.

          Related collections

          Most cited references20

          • Record: found
          • Abstract: found
          • Article: not found

          Pathological complete response and long-term clinical benefit in breast cancer: the CTNeoBC pooled analysis.

          Pathological complete response has been proposed as a surrogate endpoint for prediction of long-term clinical benefit, such as disease-free survival, event-free survival (EFS), and overall survival (OS). We had four key objectives: to establish the association between pathological complete response and EFS and OS, to establish the definition of pathological complete response that correlates best with long-term outcome, to identify the breast cancer subtypes in which pathological complete response is best correlated with long-term outcome, and to assess whether an increase in frequency of pathological complete response between treatment groups predicts improved EFS and OS. We searched PubMed, Embase, and Medline for clinical trials of neoadjuvant treatment of breast cancer. To be eligible, studies had to meet three inclusion criteria: include at least 200 patients with primary breast cancer treated with preoperative chemotherapy followed by surgery; have available data for pathological complete response, EFS, and OS; and have a median follow-up of at least 3 years. We compared the three most commonly used definitions of pathological complete response--ypT0 ypN0, ypT0/is ypN0, and ypT0/is--for their association with EFS and OS in a responder analysis. We assessed the association between pathological complete response and EFS and OS in various subgroups. Finally, we did a trial-level analysis to assess whether pathological complete response could be used as a surrogate endpoint for EFS or OS. We obtained data from 12 identified international trials and 11 955 patients were included in our responder analysis. Eradication of tumour from both breast and lymph nodes (ypT0 ypN0 or ypT0/is ypN0) was better associated with improved EFS (ypT0 ypN0: hazard ratio [HR] 0·44, 95% CI 0·39-0·51; ypT0/is ypN0: 0·48, 0·43-0·54) and OS (0·36, 0·30-0·44; 0·36, 0·31-0·42) than was tumour eradication from the breast alone (ypT0/is; EFS: HR 0·60, 95% CI 0·55-0·66; OS 0·51, 0·45-0·58). We used the ypT0/is ypN0 definition for all subsequent analyses. The association between pathological complete response and long-term outcomes was strongest in patients with triple-negative breast cancer (EFS: HR 0·24, 95% CI 0·18-0·33; OS: 0·16, 0·11-0·25) and in those with HER2-positive, hormone-receptor-negative tumours who received trastuzumab (EFS: 0·15, 0·09-0·27; OS: 0·08, 0·03, 0·22). In the trial-level analysis, we recorded little association between increases in frequency of pathological complete response and EFS (R(2)=0·03, 95% CI 0·00-0·25) and OS (R(2)=0·24, 0·00-0·70). Patients who attain pathological complete response defined as ypT0 ypN0 or ypT0/is ypN0 have improved survival. The prognostic value is greatest in aggressive tumour subtypes. Our pooled analysis could not validate pathological complete response as a surrogate endpoint for improved EFS and OS. US Food and Drug Administration. Copyright © 2014 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Prognostic value of tumor-infiltrating lymphocytes in triple-negative breast cancers from two phase III randomized adjuvant breast cancer trials: ECOG 2197 and ECOG 1199.

            Recent studies suggest that tumor-infiltrating lymphocytes (TILs) are associated with disease-free (DFS) and overall survival (OS) in operable triple-negative breast cancer (TNBC). We seek to validate the prognostic impact of TILs in primary TNBCs in two adjuvant phase III trials conducted by the Eastern Cooperative Oncology Group (ECOG). Full-face hematoxylin and eosin–stained sections of 506 tumors from ECOG trials E2197 and E1199 were evaluated for density of TILs in intraepithelial (iTILs) and stromal compartments (sTILs). Patient cases of TNBC from E2197 and E1199 were randomly selected based on availability of sections. For the primary end point of DFS, association with TIL scores was determined by fitting proportional hazards models stratified on study. Secondary end points were OS and distant recurrence–free interval (DRFI). Reporting recommendations for tumor marker prognostic studies criteria were followed, and all analyses were prespecified. The majority of 481 evaluable cancers had TILs (sTILs, 80%; iTILs, 15%). With a median follow-up of 10.6 years, higher sTIL scores were associated with better prognosis; for every 10% increase in sTILs, a 14% reduction of risk of recurrence or death (P = .02), 18% reduction of risk of distant recurrence (P = .04), and 19% reduction of risk of death (P = .01) were observed. Multivariable analysis confirmed sTILs to be an independent prognostic marker of DFS, DRFI, and OS. In two national randomized clinical trials using contemporary adjuvant chemotherapy, we confirm that stromal lymphocytic infiltration constitutes a robust prognostic factor in TNBCs. Studies assessing outcomes and therapeutic efficacies should consider stratification for this parameter.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Adaptive therapy.

              A number of successful systemic therapies are available for treatment of disseminated cancers. However, tumor response is often transient, and therapy frequently fails due to emergence of resistant populations. The latter reflects the temporal and spatial heterogeneity of the tumor microenvironment as well as the evolutionary capacity of cancer phenotypes to adapt to therapeutic perturbations. Although cancers are highly dynamic systems, cancer therapy is typically administered according to a fixed, linear protocol. Here we examine an adaptive therapeutic approach that evolves in response to the temporal and spatial variability of tumor microenvironment and cellular phenotype as well as therapy-induced perturbations. Initial mathematical models find that when resistant phenotypes arise in the untreated tumor, they are typically present in small numbers because they are less fit than the sensitive population. This reflects the "cost" of phenotypic resistance such as additional substrate and energy used to up-regulate xenobiotic metabolism, and therefore not available for proliferation, or the growth inhibitory nature of environments (i.e., ischemia or hypoxia) that confer resistance on phenotypically sensitive cells. Thus, in the Darwinian environment of a cancer, the fitter chemosensitive cells will ordinarily proliferate at the expense of the less fit chemoresistant cells. The models show that, if resistant populations are present before administration of therapy, treatments designed to kill maximum numbers of cancer cells remove this inhibitory effect and actually promote more rapid growth of the resistant populations. We present an alternative approach in which treatment is continuously modulated to achieve a fixed tumor population. The goal of adaptive therapy is to enforce a stable tumor burden by permitting a significant population of chemosensitive cells to survive so that they, in turn, suppress proliferation of the less fit but chemoresistant subpopulations. Computer simulations show that this strategy can result in prolonged survival that is substantially greater than that of high dose density or metronomic therapies. The feasibility of adaptive therapy is supported by in vivo experiments. [Cancer Res 2009;69(11):4894-903] Major FindingsWe present mathematical analysis of the evolutionary dynamics of tumor populations with and without therapy. Analytic solutions and numerical simulations show that, with pretreatment, therapy-resistant cancer subpopulations are present due to phenotypic or microenvironmental factors; maximum dose density chemotherapy hastens rapid expansion of resistant populations. The models predict that host survival can be maximized if "treatment-for-cure strategy" is replaced by "treatment-for-stability." Specifically, the models predict that an optimal treatment strategy will modulate therapy to maintain a stable population of chemosensitive cells that can, in turn, suppress the growth of resistant populations under normal tumor conditions (i.e., when therapy-induced toxicity is absent). In vivo experiments using OVCAR xenografts treated with carboplatin show that adaptive therapy is feasible and, in this system, can produce long-term survival.
                Bookmark

                Author and article information

                Journal
                Science Translational Medicine
                Sci. Transl. Med.
                American Association for the Advancement of Science (AAAS)
                1946-6234
                1946-6242
                April 17 2019
                April 17 2019
                April 17 2019
                April 17 2019
                : 11
                : 488
                : eaav0936
                Article
                10.1126/scitranslmed.aav0936
                6541393
                30996079
                7c55b938-fcfc-4d2e-9106-abb69304dbbb
                © 2019

                http://www.sciencemag.org/about/science-licenses-journal-article-reuse

                History

                Comments

                Comment on this article