60
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Warming up human body by nanoporous metallized polyethylene textile

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Space heating accounts for the largest energy end-use of buildings that imposes significant burden on the society. The energy wasted for heating the empty space of the entire building can be saved by passively heating the immediate environment around the human body. Here, we demonstrate a nanophotonic structure textile with tailored infrared (IR) property for passive personal heating using nanoporous metallized polyethylene. By constructing an IR-reflective layer on an IR-transparent layer with embedded nanopores, the nanoporous metallized polyethylene textile achieves a minimal IR emissivity (10.1%) on the outer surface that effectively suppresses heat radiation loss without sacrificing wearing comfort. This enables 7.1 °C decrease of the set-point compared to normal textile, greatly outperforming other radiative heating textiles by more than 3 °C. This large set-point expansion can save more than 35% of building heating energy in a cost-effective way, and ultimately contribute to the relief of global energy and climate issues.

          Abstract

          Energy wasted for heating the empty space of the entire building can be saved by passively heating the immediate environment around the human body. Here, the authors show a nanophotonic structure textile with tailored infrared property for passive personal heating using nanoporous metallized polyethylene.

          Related collections

          Most cited references13

          • Record: found
          • Abstract: not found
          • Article: not found

          A review on buildings energy consumption information

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Passive building energy savings: A review of building envelope components

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mussel-inspired polydopamine: a biocompatible and ultrastable coating for nanoparticles in vivo.

              Bioinspired polydopamine (PDA) has served as a universal coating to nanoparticles (NPs) for various biomedical applications. However, one remaining critical question is whether the PDA shell on NPs is stable in vivo. In this study, we modified gold nanoparticles (GNPs) with finely controlled PDA nanolayers to form uniform core/shell nanostructures (GNP@PDA). In vitro study showed that the PDA-coated GNPs had low cytotoxicity and could smoothly translocate to cancer cells. Transmission electron microscopy (TEM) analysis demonstrated that the PDA nanoshells were intact within cells after 24 h incubation. Notably, we found the GNP@PDA could partially escape from the endosomes/lysosomes to cytosol and locate close to the nucleus. Furthermore, we observed that the PDA-coated NPs have very different uptake behavior in two important organs of the liver and spleen: GNP@PDA in the liver were mainly uptaken by the Kupffer cells, while the GNP@PDA in the spleen were uptaken by a variety of cells. Importantly, we proved the PDA nanoshells were stable within cells of the liver and spleen for at least six weeks, and GNP@PDA did not show notable histological toxicity to main organs of mice in a long time. These results provided the direct evidence to support that the PDA surface modification can serve as an effective strategy to form ultrastable coatings on NPs in vivo, which can improve the intracellular delivery capacity and biocompatibility of NPs for biomedical application.
                Bookmark

                Author and article information

                Contributors
                yicui@stanford.edu
                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Publishing Group UK (London )
                2041-1723
                19 September 2017
                19 September 2017
                2017
                : 8
                : 496
                Affiliations
                [1 ]ISNI 0000000419368956, GRID grid.168010.e, Department of Materials Science and Engineering, , Stanford University, ; Stanford, CA 94305 USA
                [2 ]ISNI 0000000419368956, GRID grid.168010.e, E.L. Ginzton Laboratory, Department of Electrical Engineering, , Stanford University, ; Stanford, CA 94305 USA
                [3 ]ISNI 0000 0001 0725 7771, GRID grid.445003.6, Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, ; 2575 Sand Hill Road, Menlo Park, CA 94025 USA
                Author information
                http://orcid.org/0000-0003-0307-2184
                http://orcid.org/0000-0002-0718-4784
                Article
                614
                10.1038/s41467-017-00614-4
                5605506
                28928427
                7ced275b-b09b-4b83-95ac-f44d58b4af13
                © The Author(s) 2017

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 14 February 2017
                : 13 July 2017
                Categories
                Article
                Custom metadata
                © The Author(s) 2017

                Uncategorized
                Uncategorized

                Comments

                Comment on this article