6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Visible light-based stereolithography bioprinting of cell-adhesive gelatin hydrogels.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Stereolithography-based bioprinting offers advantages in resolution and rapid printing time, and thus has received major attention in recent years. However, traditional stereolithography-based bioprinting utilizes an ultraviolet light which may cause mutagenesis and carcinogenesis of cells. In this paper, we present a new visible light crosslinkable bioink that is based on cell-adhesive gelatin. The bioink consists of Eosin Y (EY) based photoinitiator and gelatin methacrylate (GelMA) pre-polymer solution. We examined the feasibility of using visible light from a commercial beam projector to pattern the EY-GelMA bioink. We measured the absorbance of bioink to characterize its sensitivity to visible light and performed bioprinting to test its ability to promote cell adhesion. It is found that the EY-GelMA bioink has an absorption peak at roughly 522 nm, and that it can be successfully crosslinked by visible light from the commercial projector. We performed the bioprinting experiments and visualized the cell morphology using nuclei/F-actin staining. Experimental results show that most of the cells attached to the EY-GelMA bioink after five days' culturing. Ultimately, the EY-GelMA bioink can support both visible light crosslinking and cell adhesion, offering great potential in bioprinting and tissue engineering.

          Related collections

          Author and article information

          Journal
          Conf Proc IEEE Eng Med Biol Soc
          Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference
          Institute of Electrical and Electronics Engineers (IEEE)
          1557-170X
          1557-170X
          July 2017
          : 2017
          Article
          10.1109/EMBC.2017.8037144
          29060188
          7d1bd31f-306c-4da2-82cb-bd1ddcb9ce53
          History

          Comments

          Comment on this article