9
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Impact of the SARS-CoV-2 Spike Protein on the Innate Immune System: A Review

      review-article
      1 ,
      ,
      Cureus
      Cureus
      type-1 interferons, cytokine storm, public awareness about vaccination, spike protein and covid-19, innate immune system

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The Spike protein enables the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection by binding to multiple receptors, including the angiotensin-converting enzyme 2 (ACE2). Scientific studies also indicate that Spike is involved in severe forms of coronavirus disease 2019 (COVID-19), "long-haul COVID diseases" - also known as "long COVID syndromes" or "post-acute sequelae of SARS-CoV-2 infection" (PACS) - or, recently, in adverse reactions to lipid nanoparticle-messenger ribonucleic acid (mRNA) vaccines or other anti-COVID19 products. Numerous mutations, notably within the subunit 1 of Spike (S1), prevent neutralization by antibodies, but more generally, the virus has developed numerous strategies to avoid immune system surveillance, especially type-I interferons (IFN-I). Meanwhile, a “hyperinflammatory” state, named “cytokine storm,” sets in. However, what role does the Spike protein play in the immune escape mechanisms? Can its inflammatory activities affect IFN-I? Does Spike block IFN-I or hijack them for the virus benefits? What are the other potential consequences? This article was written to provide an up-to-date and more general overview of the impact of the Spike protein on the innate immune system and its effectors at the molecular level.

          Related collections

          Most cited references296

          • Record: found
          • Abstract: found
          • Article: not found

          SARS-CoV-2 variants, spike mutations and immune escape

          Although most mutations in the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genome are expected to be either deleterious and swiftly purged or relatively neutral, a small proportion will affect functional properties and may alter infectivity, disease severity or interactions with host immunity. The emergence of SARS-CoV-2 in late 2019 was followed by a period of relative evolutionary stasis lasting about 11 months. Since late 2020, however, SARS-CoV-2 evolution has been characterized by the emergence of sets of mutations, in the context of ‘variants of concern’, that impact virus characteristics, including transmissibility and antigenicity, probably in response to the changing immune profile of the human population. There is emerging evidence of reduced neutralization of some SARS-CoV-2 variants by postvaccination serum; however, a greater understanding of correlates of protection is required to evaluate how this may impact vaccine effectiveness. Nonetheless, manufacturers are preparing platforms for a possible update of vaccine sequences, and it is crucial that surveillance of genetic and antigenic changes in the global virus population is done alongside experiments to elucidate the phenotypic impacts of mutations. In this Review, we summarize the literature on mutations of the SARS-CoV-2 spike protein, the primary antigen, focusing on their impacts on antigenicity and contextualizing them in the protein structure, and discuss them in the context of observed mutation frequencies in global sequence datasets. The evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been characterized by the emergence of mutations and so-called variants of concern that impact virus characteristics, including transmissibility and antigenicity. In this Review, members of the COVID-19 Genomics UK (COG-UK) Consortium and colleagues summarize mutations of the SARS-CoV-2 spike protein, focusing on their impacts on antigenicity and contextualizing them in the protein structure, and discuss them in the context of observed mutation frequencies in global sequence datasets.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            mRNA vaccines — a new era in vaccinology

            mRNA vaccines represent a promising alternative to conventional vaccine approaches because of their high potency, capacity for rapid development and potential for low-cost manufacture and safe administration. However, their application has until recently been restricted by the instability and inefficient in vivo delivery of mRNA. Recent technological advances have now largely overcome these issues, and multiple mRNA vaccine platforms against infectious diseases and several types of cancer have demonstrated encouraging results in both animal models and humans. This Review provides a detailed overview of mRNA vaccines and considers future directions and challenges in advancing this promising vaccine platform to widespread therapeutic use.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation

              MicroRNAs (miRNAs) are a class of non-coding RNAs that play important roles in regulating gene expression. The majority of miRNAs are transcribed from DNA sequences into primary miRNAs and processed into precursor miRNAs, and finally mature miRNAs. In most cases, miRNAs interact with the 3′ untranslated region (3′ UTR) of target mRNAs to induce mRNA degradation and translational repression. However, interaction of miRNAs with other regions, including the 5′ UTR, coding sequence, and gene promoters, have also been reported. Under certain conditions, miRNAs can also activate translation or regulate transcription. The interaction of miRNAs with their target genes is dynamic and dependent on many factors, such as subcellular location of miRNAs, the abundancy of miRNAs and target mRNAs, and the affinity of miRNA-mRNA interactions. miRNAs can be secreted into extracellular fluids and transported to target cells via vesicles, such as exosomes, or by binding to proteins, including Argonautes. Extracellular miRNAs function as chemical messengers to mediate cell-cell communication. In this review, we provide an update on canonical and non-canonical miRNA biogenesis pathways and various mechanisms underlying miRNA-mediated gene regulations. We also summarize the current knowledge of the dynamics of miRNA action and of the secretion, transfer, and uptake of extracellular miRNAs.
                Bookmark

                Author and article information

                Journal
                Cureus
                Cureus
                2168-8184
                Cureus
                Cureus (Palo Alto (CA) )
                2168-8184
                26 March 2024
                March 2024
                : 16
                : 3
                : e57008
                Affiliations
                [1 ] Immunology, Independent Researcher, Béthune, FRA
                Author notes
                Annelise Bocquet-Garçon annelisebocquet@ 123456hotmail.fr
                Article
                10.7759/cureus.57008
                10973921
                38549864
                7d1e7a1c-89da-4ba3-8211-430fbb7f6162
                Copyright © 2024, Bocquet-Garçon et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution License CC-BY 4.0., which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 26 March 2024
                Categories
                Pathology
                Allergy/Immunology
                Infectious Disease

                type-1 interferons,cytokine storm,public awareness about vaccination,spike protein and covid-19,innate immune system

                Comments

                Comment on this article