15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Modulatory effects of acupuncture on brain networks in mild cognitive impairment patients

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Abstract

          Functional magnetic resonance imaging has been widely used to investigate the effects of acupuncture on neural activity. However, most functional magnetic resonance imaging studies have focused on acute changes in brain activation induced by acupuncture. Thus, the time course of the therapeutic effects of acupuncture remains unclear. In this study, 32 patients with amnestic mild cognitive impairment were randomly divided into two groups, where they received either Tiaoshen Yizhi acupuncture or sham acupoint acupuncture. The needles were either twirled at Tiaoshen Yizhi acupoints, including Sishencong (EX-HN1), Yintang (EX-HN3), Neiguan (PC6), Taixi (KI3), Fenglong (ST40), and Taichong (LR3), or at related sham acupoints at a depth of approximately 15 mm, an angle of ± 60°, and a rate of approximately 120 times per minute. Acupuncture was conducted for 4 consecutive weeks, five times per week, on weekdays. Resting-state functional magnetic resonance imaging indicated that connections between cognition-related regions such as the insula, dorsolateral prefrontal cortex, hippocampus, thalamus, inferior parietal lobule, and anterior cingulate cortex increased after acupuncture at Tiaoshen Yizhi acupoints. The insula, dorsolateral prefrontal cortex, and hippocampus acted as central brain hubs. Patients in the Tiaoshen Yizhi group exhibited improved cognitive performance after acupuncture. In the sham acupoint acupuncture group, connections between brain regions were dispersed, and we found no differences in cognitive function following the treatment. These results indicate that acupuncture at Tiaoshen Yizhi acupoints can regulate brain networks by increasing connectivity between cognition-related regions, thereby improving cognitive function in patients with mild cognitive impairment.

          Related collections

          Most cited references54

          • Record: found
          • Abstract: found
          • Article: not found

          Self-control in decision-making involves modulation of the vmPFC valuation system.

          Every day, individuals make dozens of choices between an alternative with higher overall value and a more tempting but ultimately inferior option. Optimal decision-making requires self-control. We propose two hypotheses about the neurobiology of self-control: (i) Goal-directed decisions have their basis in a common value signal encoded in ventromedial prefrontal cortex (vmPFC), and (ii) exercising self-control involves the modulation of this value signal by dorsolateral prefrontal cortex (DLPFC). We used functional magnetic resonance imaging to monitor brain activity while dieters engaged in real decisions about food consumption. Activity in vmPFC was correlated with goal values regardless of the amount of self-control. It incorporated both taste and health in self-controllers but only taste in non-self-controllers. Activity in DLPFC increased when subjects exercised self-control and correlated with activity in vmPFC.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Neurophysiological architecture of functional magnetic resonance images of human brain.

            We investigated large-scale systems organization of the whole human brain using functional magnetic resonance imaging (fMRI) data acquired from healthy volunteers in a no-task or 'resting' state. Images were parcellated using a prior anatomical template, yielding regional mean time series for each of 90 regions (major cortical gyri and subcortical nuclei) in each subject. Significant pairwise functional connections, defined by the group mean inter-regional partial correlation matrix, were mostly either local and intrahemispheric or symmetrically interhemispheric. Low-frequency components in the time series subtended stronger inter-regional correlations than high-frequency components. Intrahemispheric connectivity was generally related to anatomical distance by an inverse square law; many symmetrical interhemispheric connections were stronger than predicted by the anatomical distance between bilaterally homologous regions. Strong interhemispheric connectivity was notably absent in data acquired from a single patient, minimally conscious following a brainstem lesion. Multivariate analysis by hierarchical clustering and multidimensional scaling consistently defined six major systems in healthy volunteers-- corresponding approximately to four neocortical lobes, medial temporal lobe and subcortical nuclei- - that could be further decomposed into anatomically and functionally plausible subsystems, e.g. dorsal and ventral divisions of occipital cortex. An undirected graph derived by thresholding the healthy group mean partial correlation matrix demonstrated local clustering or cliquishness of connectivity and short mean path length compatible with prior data on small world characteristics of non-human cortical anatomy. Functional MRI demonstrates a neurophysiological architecture of the normal human brain that is anatomically sensible, strongly symmetrical, disrupted by acute brain injury, subtended predominantly by low frequencies and consistent with a small world network topology.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Structural insights into aberrant topological patterns of large-scale cortical networks in Alzheimer's disease.

              Recent research on Alzheimer's disease (AD) has shown that cognitive and memory decline in this disease is accompanied by disrupted changes in the coordination of large-scale brain functional networks. However, alterations in coordinated patterns of structural brain networks in AD are still poorly understood. Here, we used cortical thickness measurement from magnetic resonance imaging to investigate large-scale structural brain networks in 92 AD patients and 97 normal controls. Brain networks were constructed by thresholding cortical thickness correlation matrices of 54 regions and analyzed using graph theoretical approaches. Compared with controls, AD patients showed decreased cortical thickness intercorrelations between the bilateral parietal regions and increased intercorrelations in several selective regions involving the lateral temporal and parietal cortex as well as the cingulate and medial frontal cortex regions. Specially, AD patients showed abnormal small-world architecture in the structural cortical networks (increased clustering and shortest paths linking individual regions), implying a less optimal topological organization in AD. Moreover, AD patients were associated with reduced nodal centrality predominantly in the temporal and parietal heteromodal association cortex regions and increased nodal centrality in the occipital cortex regions. Finally, the brain networks of AD were about equally as robust to random failures as those of controls, but more vulnerable against targeted attacks, presumably because of the effects of pathological topological organization. Our findings suggest that the coordinated patterns of cortical morphology are widely altered in AD patients, thus providing structural evidence for disrupted integrity in large-scale brain networks that underlie cognition. This work has implications for our understanding of how functional deficits in patients are associated with their underlying structural (morphological) basis.
                Bookmark

                Author and article information

                Journal
                Neural Regen Res
                Neural Regen Res
                NRR
                Neural Regeneration Research
                Medknow Publications & Media Pvt Ltd (India )
                1673-5374
                1876-7958
                February 2017
                : 12
                : 2
                : 250-258
                Affiliations
                [1 ]Department of Rehabilitation Medicine, Shenzhen Baoan Hospital, Southern Medical University, Shenzhen, Guangdong Province, China
                [2 ]Shenzhen Baoan Hospital, Southern Medical University, Shenzhen, Guangdong Province, China
                [3 ]Department of Radiology, Shenzhen Baoan Hospital, Southern Medical University, Shenzhen, Guangdong Province, China
                [4 ]Department of Neurology, Shenzhen Baoan Hospital, Southern Medical University, Shenzhen, Guangdong Province, China
                [5 ]Tianjin Medical University, Tianjin, China
                Author notes
                [* ] Correspondence to: Shang-jie Chen, csjme@ 123456163.com .
                [#]

                These authors contributed equally to this study.

                Author contributions: TTT and DW participated in recruitment, cognitive assessment, data analysis, contaction with patients, and paper writing. XMZ participated in data collection and paper writing. XY, XYJ and JS performed data collection. HLX performed acupuncture. JPL performed fMRI scan. LY analyzed fMRI dada. FW diagnosed MCI. HBY performed the statistics. SJC and JKH designed research, and provided critical reversion for paper. All authors approved the final version of the paper.

                Author information
                http://orcid.org/0000-0001-8414-7074
                Article
                NRR-12-250
                10.4103/1673-5374.200808
                5361509
                28400807
                7da0f05e-0087-46ea-ad24-02364cf03b35
                Copyright: © Neural Regeneration Research

                This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms.

                History
                : 18 January 2017
                Categories
                Research Article

                nerve regeneration,mild cognitive impairment,alzheimer's disease,neuroimaging,resting-state functional magnetic resonance imaging,brain network,acupuncture,tiaoshen yizhi,neural regeneration

                Comments

                Comment on this article