37
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cytochrome c as a Potentially Clinical Useful Marker of Mitochondrial and Cellular Damage

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mitochondria are evolutionary endosymbionts derived from bacteria. Thus, they bear molecules, such as mitochondrial DNA (mtDNA) that contains CpG DNA repeats and N-formyl peptides (FPs), found in bacteria. Upon cell necrosis or apoptosis, these molecules are released into the interstitial space and the circulation and recognized by the immune cells through the same receptors that recognize pathogen-associated molecular patterns, leading to inflammation. Other mitochondrial molecules are not of bacterial origin, but they may serve as danger-associated molecular patterns (DAMPs) when due to cell injury are translocated into inappropriate compartments. There they are recognized by pattern recognition receptors of the immune cells. Cytochrome c is such a molecule. In this review, experimental and clinical data are presented that confirms cytochrome c release into the extracellular space in pathological conditions characterized by cell death. This indicates that serum cytochrome c, which can be easily measured, may be a clinically useful marker for diagnosing and assessing the severity of such pathological entities. Reasonably, detection of high cytochrome c level into the circulation means release of various other molecules that serves as DAMPs when found extracellularly, the mtDNA and FPs included. Finally, because the release of this universally found compound into the extracellular space makes cytochrome c an ideal molecule to play the role of a DAMP per se, the available experimental and clinical data that support such a role are provided.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade.

          We report here the purification of the third protein factor, Apaf-3, that participates in caspase-3 activation in vitro. Apaf-3 was identified as a member of the caspase family, caspase-9. Caspase-9 and Apaf-1 bind to each other via their respective NH2-terminal CED-3 homologous domains in the presence of cytochrome c and dATP, an event that leads to caspase-9 activation. Activated caspase-9 in turn cleaves and activates caspase-3. Depletion of caspase-9 from S-100 extracts diminished caspase-3 activation. Mutation of the active site of caspase-9 attenuated the activation of caspase-3 and cellular apoptotic response in vivo, indicating that caspase-9 is the most upstream member of the apoptotic protease cascade that is triggered by cytochrome c and dATP.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mitochondrial DNA That Escapes from Autophagy Causes Inflammation and Heart Failure

            Heart failure is a leading cause of morbidity and mortality in industrialized countries. Although infection with microorganisms is not involved in the development of heart failure in most cases, inflammation has been implicated in the pathogenesis of heart failure 1 . However, the mechanisms responsible for initiating and integrating inflammatory responses within the heart remain poorly defined. Mitochondria are evolutionary endosymbionts derived from bacteria and contain DNA similar to bacterial DNA 2,3,4 . Mitochondria damaged by external hemodynamic stress are degraded by the autophagy/lysosome system in cardiomyocytes 5 . Here, we show that mitochondrial DNA that escapes from autophagy cell-autonomously leads to Toll-like receptor (TLR) 9-mediated inflammatory responses in cardiomyocytes and is capable of inducing myocarditis, and dilated cardiomyopathy. Cardiac-specific deletion of lysosomal deoxyribonuclease (DNase) II showed no cardiac phenotypes under baseline conditions, but increased mortality and caused severe myocarditis and dilated cardiomyopathy 10 days after treatment with pressure overload. Early in the pathogenesis, DNase II-deficient hearts exhibited infiltration of inflammatory cells and increased mRNA expression of inflammatory cytokines, with accumulation of mitochondrial DNA deposits in autolysosomes in the myocardium. Administration of the inhibitory oligodeoxynucleotides against TLR9, which is known to be activated by bacterial DNA 6 , or ablation of Tlr9 attenuated the development of cardiomyopathy in DNase II-deficient mice. Furthermore, Tlr9-ablation improved pressure overload-induced cardiac dysfunction and inflammation even in mice with wild-type Dnase2a alleles. These data provide new perspectives on the mechanism of genesis of chronic inflammation in failing hearts.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mitochondrial evolution.

              The serial endosymbiosis theory is a favored model for explaining the origin of mitochondria, a defining event in the evolution of eukaryotic cells. As usually described, this theory posits that mitochondria are the direct descendants of a bacterial endosymbiont that became established at an early stage in a nucleus-containing (but amitochondriate) host cell. Gene sequence data strongly support a monophyletic origin of the mitochondrion from a eubacterial ancestor shared with a subgroup of the alpha-Proteobacteria. However, recent studies of unicellular eukaryotes (protists), some of them little known, have provided insights that challenge the traditional serial endosymbiosis-based view of how the eukaryotic cell and its mitochondrion came to be. These data indicate that the mitochondrion arose in a common ancestor of all extant eukaryotes and raise the possibility that this organelle originated at essentially the same time as the nuclear component of the eukaryotic cell rather than in a separate, subsequent event.
                Bookmark

                Author and article information

                Contributors
                URI : http://frontiersin.org/people/u/186552
                URI : http://frontiersin.org/people/u/357444
                URI : http://frontiersin.org/people/u/62328
                Journal
                Front Immunol
                Front Immunol
                Front. Immunol.
                Frontiers in Immunology
                Frontiers Media S.A.
                1664-3224
                20 July 2016
                2016
                : 7
                : 279
                Affiliations
                [1] 1Department of Nephrology, Medical School, University of Thessaly , Larissa, Greece
                Author notes

                Edited by: Thomas A. Kufer, University of Hohenheim, Germany

                Reviewed by: Fayyaz S. Sutterwala, University of Iowa, USA; Carla R. Scanzello, University of Pennsylvania, USA

                *Correspondence: Theodoros Eleftheriadis, teleftheriadis@ 123456yahoo.com

                Specialty section: This article was submitted to Molecular Innate Immunity, a section of the journal Frontiers in Immunology

                Article
                10.3389/fimmu.2016.00279
                4951490
                27489552
                7db3fead-5ce9-4453-a4cf-9cbfe954e474
                Copyright © 2016 Eleftheriadis, Pissas, Liakopoulos and Stefanidis.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 24 May 2016
                : 11 July 2016
                Page count
                Figures: 1, Tables: 0, Equations: 0, References: 36, Pages: 5, Words: 4051
                Categories
                Immunology
                Mini Review

                Immunology
                cytochrome c,danger-associated molecular patterns,mitochondrial,apoptosis,necrosis
                Immunology
                cytochrome c, danger-associated molecular patterns, mitochondrial, apoptosis, necrosis

                Comments

                Comment on this article