2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Radiotherapy-induced enrichment of EGF-modified doxorubicin nanoparticles enhances the therapeutic outcome of lung cancer

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Chemotherapy is the primary treatment for advanced non-small-cell lung cancer (NSCLC). However, related dose-dependent toxicity limits its clinical use. Therefore, it is necessary to explore new strategies for improving the clinical outcomes while reducing the side effects of chemotherapy in the treatment of NSCLC. In this study, we designed and synthesized epidermal growth factor (EGF)-modified doxorubicin nanoparticles (EGF@DOX-NPs) that selectively targets the epidermal growth factor receptor (EGFR) overexpressed in lung tumor cells. When administered in combination with low-dose X-ray radiotherapy (RT), the NPs preferentially accumulated at the tumor site due to radiation-induced outburst of the local intra-tumoral blood vessels. Compared with DOX alone, EGF@DOX-NPs significantly decreased the viability and migration and enhanced the apoptosis rates of tumor cells in vitro. Also, the EGF@DOX-NPs significantly inhibited tumor growth in vivo, increasing the survival of the tumor-bearing mice without apparent systemic toxic effects through RT-induced aggregation. The tumor cell proliferation was greatly inhibited in the RT + EGF@DOX-NPs group. Contrarily, the apoptosis of tumor cells was significantly higher in this group. These results confirm the promising clinical application of radiotherapy in combination with EGF@DOX-NPs for lung cancer treatment.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Progress and challenges towards targeted delivery of cancer therapeutics

          Targeted delivery approaches for cancer therapeutics have shown a steep rise over the past few decades. However, compared to the plethora of successful pre-clinical studies, only 15 passively targeted nanocarriers (NCs) have been approved for clinical use and none of the actively targeted NCs have advanced past clinical trials. Herein, we review the principles behind targeted delivery approaches to determine potential reasons for their limited clinical translation and success. We propose criteria and considerations that must be taken into account for the development of novel actively targeted NCs. We also highlight the possible directions for the development of successful tumor targeting strategies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The tumour microenvironment after radiotherapy: mechanisms of resistance and recurrence.

            Radiotherapy plays a central part in curing cancer. For decades, most research on improving treatment outcomes has focused on modulating radiation-induced biological effects on cancer cells. Recently, we have better understood that components within the tumour microenvironment have pivotal roles in determining treatment outcomes. In this Review, we describe vascular, stromal and immunological changes that are induced in the tumour microenvironment by irradiation and discuss how these changes may promote radioresistance and tumour recurrence. We also highlight how this knowledge is guiding the development of new treatment paradigms in which biologically targeted agents will be combined with radiotherapy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Tumor angiogenesis and vascular normalization: alternative therapeutic targets.

              Tumor blood vessels are a key target for cancer therapeutic management. Tumor cells secrete high levels of pro-angiogenic factors which contribute to the creation of an abnormal vascular network characterized by disorganized, immature and permeable blood vessels, resulting in poorly perfused tumors. The hypoxic microenvironment created by impaired tumor perfusion can promote the selection of more invasive and aggressive tumor cells and can also impede the tumor-killing action of immune cells. Furthermore, abnormal tumor perfusion also reduces the diffusion of chemotherapeutic drugs and radiotherapy efficiency. To fight against this defective phenotype, the normalization of the tumor vasculature has emerged as a new therapeutic strategy. Vascular normalization, by restoring proper tumor perfusion and oxygenation, could limit tumor cell invasiveness and improve the effectiveness of anticancer treatments. In this review, we investigate the mechanisms involved in tumor angiogenesis and describe strategies used to achieve vascular normalization.
                Bookmark

                Author and article information

                Journal
                Drug Deliv
                Drug Deliv
                Drug Delivery
                Taylor & Francis
                1071-7544
                1521-0464
                14 February 2022
                2022
                14 February 2022
                : 29
                : 1
                : 588-599
                Affiliations
                [a ]Department of Oncology, the Affiliated Hospital of Southwest Medical University , Luzhou, China
                [b ]Department of Oncology, The Affiliated TCM Hospital of Southwest Medical University , Luzhou, China
                Author notes
                [*]

                These authors are contributed equally to this work.

                Supplemental data for this article can be accessed here .

                CONTACT Sheng Lin lslinsheng@ 123456163.com
                Article
                2036871
                10.1080/10717544.2022.2036871
                8856057
                35156493
                7e375c90-750a-481e-9ba2-4d915f93444d
                © 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                Page count
                Figures: 10, Tables: 0, Pages: 12, Words: 6415
                Categories
                Research Article
                Research Article

                Pharmacology & Pharmaceutical medicine
                doxorubicin,nanoparticles,egf,lung cancer,radiotherapy
                Pharmacology & Pharmaceutical medicine
                doxorubicin, nanoparticles, egf, lung cancer, radiotherapy

                Comments

                Comment on this article