26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Immunoresponsive gene 1 (Irg1) is highly expressed in mammalian macrophages during inflammation, but its biological function has not yet been elucidated. Here, we identify Irg1 as the gene coding for an enzyme producing itaconic acid (also known as methylenesuccinic acid) through the decarboxylation of cis-aconitate, a tricarboxylic acid cycle intermediate. Using a gain-and-loss-of-function approach in both mouse and human immune cells, we found Irg1 expression levels correlating with the amounts of itaconic acid, a metabolite previously proposed to have an antimicrobial effect. We purified IRG1 protein and identified its cis-aconitate decarboxylating activity in an enzymatic assay. Itaconic acid is an organic compound that inhibits isocitrate lyase, the key enzyme of the glyoxylate shunt, a pathway essential for bacterial growth under specific conditions. Here we show that itaconic acid inhibits the growth of bacteria expressing isocitrate lyase, such as Salmonella enterica and Mycobacterium tuberculosis. Furthermore, Irg1 gene silencing in macrophages resulted in significantly decreased intracellular itaconic acid levels as well as significantly reduced antimicrobial activity during bacterial infections. Taken together, our results demonstrate that IRG1 links cellular metabolism with immune defense by catalyzing itaconic acid production.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: not found
          • Article: not found

          Macrophage activation and polarization

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase.

            Mycobacterium tuberculosis claims more human lives each year than any other bacterial pathogen. Infection is maintained in spite of acquired immunity and resists eradication by antimicrobials. Despite an urgent need for new therapies targeting persistent bacteria, our knowledge of bacterial metabolism throughout the course of infection remains rudimentary. Here we report that persistence of M. tuberculosis in mice is facilitated by isocitrate lyase (ICL), an enzyme essential for the metabolism of fatty acids. Disruption of the icl gene attenuated bacterial persistence and virulence in immune-competent mice without affecting bacterial growth during the acute phase of infection. A link between the requirement for ICL and the immune status of the host was established by the restored virulence of delta icl bacteria in interferon-gamma knockout mice. This link was apparent at the level of the infected macrophage: Activation of infected macrophages increased expression of ICL, and the delta icl mutant was markedly attenuated for survival in activated but not resting macrophages. These data suggest that the metabolism of M. tuberculosis in vivo is profoundly influenced by the host response to infection, an observation with important implications for the treatment of chronic tuberculosis.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Characteristics of a Human Cell Line Transformed by DNA from Human Adenovirus Type 5

                Bookmark

                Author and article information

                Journal
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                May 07 2013
                May 07 2013
                April 22 2013
                May 07 2013
                : 110
                : 19
                : 7820-7825
                Article
                10.1073/pnas.1218599110
                3651434
                23610393
                7e5a4f95-c2be-47a6-a46e-22abbace1735
                © 2013
                History

                Comments

                Comment on this article