2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      XRCC2 repairs mitochondrial DNA damage and fuels malignant behavior in hepatocellular carcinoma

      , , , , , , , ,
      Cancer Letters
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          Hepatocellular carcinoma

          Hepatocellular carcinoma appears frequently in patients with cirrhosis. Surveillance by biannual ultrasound is recommended for such patients because it allows diagnosis at an early stage, when effective therapies are feasible. The best candidates for resection are patients with a solitary tumour and preserved liver function. Liver transplantation benefits patients who are not good candidates for surgical resection, and the best candidates are those within Milan criteria (solitary tumour ≤5 cm or up to three nodules ≤3 cm). Image-guided ablation is the most frequently used therapeutic strategy, but its efficacy is limited by the size of the tumour and its localisation. Chemoembolisation has survival benefit in asymptomatic patients with multifocal disease without vascular invasion or extrahepatic spread. Finally, sorafenib, lenvatinib, which is non-inferior to sorafenib, and regorafenib increase survival and are the standard treatments in advanced hepatocellular carcinoma. This Seminar summarises the scientific evidence that supports the current recommendations for clinical practice, and discusses the areas in which more research is needed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release.

            Byproducts of normal mitochondrial metabolism and homeostasis include the buildup of potentially damaging levels of reactive oxygen species (ROS), Ca(2+), etc., which must be normalized. Evidence suggests that brief mitochondrial permeability transition pore (mPTP) openings play an important physiological role maintaining healthy mitochondria homeostasis. Adaptive and maladaptive responses to redox stress may involve mitochondrial channels such as mPTP and inner membrane anion channel (IMAC). Their activation causes intra- and intermitochondrial redox-environment changes leading to ROS release. This regenerative cycle of mitochondrial ROS formation and release was named ROS-induced ROS release (RIRR). Brief, reversible mPTP opening-associated ROS release apparently constitutes an adaptive housekeeping function by the timely release from mitochondria of accumulated potentially toxic levels of ROS (and Ca(2+)). At higher ROS levels, longer mPTP openings may release a ROS burst leading to destruction of mitochondria, and if propagated from mitochondrion to mitochondrion, of the cell itself. The destructive function of RIRR may serve a physiological role by removal of unwanted cells or damaged mitochondria, or cause the pathological elimination of vital and essential mitochondria and cells. The adaptive release of sufficient ROS into the vicinity of mitochondria may also activate local pools of redox-sensitive enzymes involved in protective signaling pathways that limit ischemic damage to mitochondria and cells in that area. Maladaptive mPTP- or IMAC-related RIRR may also be playing a role in aging. Because the mechanism of mitochondrial RIRR highlights the central role of mitochondria-formed ROS, we discuss all of the known ROS-producing sites (shown in vitro) and their relevance to the mitochondrial ROS production in vivo. Copyright © 2014 the American Physiological Society.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mitochondria: in sickness and in health.

              Mitochondria perform diverse yet interconnected functions, producing ATP and many biosynthetic intermediates while also contributing to cellular stress responses such as autophagy and apoptosis. Mitochondria form a dynamic, interconnected network that is intimately integrated with other cellular compartments. In addition, mitochondrial functions extend beyond the boundaries of the cell and influence an organism's physiology by regulating communication between cells and tissues. It is therefore not surprising that mitochondrial dysfunction has emerged as a key factor in a myriad of diseases, including neurodegenerative and metabolic disorders. We provide a current view of how mitochondrial functions impinge on health and disease. Copyright © 2012 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Cancer Letters
                Cancer Letters
                Elsevier BV
                03043835
                August 2021
                August 2021
                : 512
                : 1-14
                Article
                10.1016/j.canlet.2021.04.026
                33964350
                7ef0df66-1e59-4224-890e-979832bd109a
                © 2021

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article