6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Localization and substrate selectivity of sea urchin multidrug (MDR) efflux transporters.

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In this study, we cloned, expressed and functionally characterized Stronglycentrotus purpuratus (Sp) ATP-binding cassette (ABC) transporters. This screen identified three multidrug resistance (MDR) transporters with functional homology to the major types of MDR transporters found in humans. When overexpressed in embryos, the apical transporters Sp-ABCB1a, ABCB4a, and ABCG2a can account for as much as 87% of the observed efflux activity, providing a robust assay for their substrate selectivity. Using this assay, we found that sea urchin MDR transporters export canonical MDR susbtrates such as calcein-AM, bodipy-verapamil, bodipy-vinblastine, and mitoxantrone. In addition, we characterized the impact of nonconservative substitutions in the primary sequences of drug binding domains of sea urchin versus murine ABCB1 by mutation of Sp-ABCB1a and treatment of embryos with stereoisomeric cyclic peptide inhibitors (QZ59 compounds). The results indicated that two substitutions in transmembrane helix 6 reverse stereoselectivity of Sp-ABCB1a for QZ59 enantiomers compared with mouse ABCB1a. This suggests that subtle changes in the primary sequence of transporter drug binding domains could fine-tune substrate specificity through evolution.

          Related collections

          Author and article information

          Journal
          J. Biol. Chem.
          The Journal of biological chemistry
          American Society for Biochemistry & Molecular Biology (ASBMB)
          1083-351X
          0021-9258
          Dec 21 2012
          : 287
          : 52
          Affiliations
          [1 ] Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, USA.
          Article
          M112.424879
          10.1074/jbc.M112.424879
          3527970
          23124201
          7fe5f7d5-1645-48a1-bdef-7f4dee5eef73
          History

          Comments

          Comment on this article