36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Metabolomic profiling reveals severe skeletal muscle group-specific perturbations of metabolism in aged FBN rats

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mammalian skeletal muscles exhibit age-related adaptive and pathological remodeling. Several muscles in particular undergo progressive atrophy and degeneration beyond median lifespan. To better understand myocellular responses to aging, we used semi-quantitative global metabolomic profiling to characterize trends in metabolic changes between 15-month-old adult and 32-month-old aged Fischer 344 × Brown Norway (FBN) male rats. The FBN rat gastrocnemius muscle exhibits age-dependent atrophy, whereas the soleus muscle, up until 32 months, exhibits markedly fewer signs of atrophy. Both gastrocnemius and soleus muscles were analyzed, as well as plasma and urine. Compared to adult gastrocnemius, aged gastrocnemius showed evidence of reduced glycolytic metabolism, including accumulation of glycolytic, glycogenolytic, and pentose phosphate pathway intermediates. Pyruvate was elevated with age, yet levels of citrate and nicotinamide adenine dinucleotide were reduced, consistent with mitochondrial abnormalities. Indicative of muscle atrophy, 3-methylhistidine and free amino acids were elevated in aged gastrocnemius. The monounsaturated fatty acids oleate, cis-vaccenate, and palmitoleate also increased in aged gastrocnemius, suggesting altered lipid metabolism. Compared to gastrocnemius, aged soleus exhibited far fewer changes in carbohydrate metabolism, but did show reductions in several glycolytic intermediates, fumarate, malate, and flavin adenine dinucleotide. Plasma biochemicals showing the largest age-related increases included glycocholate, heme, 1,5-anhydroglucitol, 1-palmitoleoyl-glycerophosphocholine, palmitoleate, and creatine. These changes suggest reduced insulin sensitivity in aged FBN rats. Altogether, these data highlight skeletal muscle group-specific perturbations of glucose and lipid metabolism consistent with mitochondrial dysfunction in aged FBN rats.

          Electronic supplementary material

          The online version of this article (doi:10.1007/s10522-014-9492-5) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          Decline in skeletal muscle mitochondrial function with aging in humans.

          Cumulative mtDNA damage occurs in aging animals, and mtDNA mutations are reported to accelerate aging in mice. We determined whether aging results in increased DNA oxidative damage and reduced mtDNA abundance and mitochondrial function in skeletal muscle of human subjects. Studies performed in 146 healthy men and women aged 18-89 yr demonstrated that mtDNA and mRNA abundance and mitochondrial ATP production all declined with advancing age. Abundance of mtDNA was positively related to mitochondrial ATP production rate, which in turn, was closely associated with aerobic capacity and glucose tolerance. The content of several mitochondrial proteins was reduced in older muscles, whereas the level of the oxidative DNA lesion, 8-oxo-deoxyguanosine, was increased, supporting the oxidative damage theory of aging. These results demonstrate that age-related muscle mitochondrial dysfunction is related to reduced mtDNA and muscle functional changes that are common in the elderly.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mitochondrial function and apoptotic susceptibility in aging skeletal muscle.

            During aging, skeletal muscle undergoes sarcopenia, a condition characterized by a loss of muscle cell mass and alterations in contractile function. The origin of these decrements is unknown, but evidence suggests that they can be partly attributed to mitochondrial dysfunction. To characterize the nature of this dysfunction, we investigated skeletal muscle contractile properties, subsarcolemmal (SS) and intermyofibrillar (IMF) mitochondrial biogenesis and function, as well as apoptotic susceptibility in young (6 months old) and senescent (36 months old) Fischer 344 Brown Norway rats. Muscle mass and maximal force production were significantly lower in the 36-month group, which is indicative of a sarcopenic phenotype. Furthermore, contractile activity in situ revealed greater fatigability in the 36-month compared to the 6-month animals. This decrement could be partially accounted for by a 30% lower mitochondrial content in fast-twitch muscle from 36-month animals, as well as lower protein levels of the transcriptional coactivator peroxisome proliferator-activated receptor gamma coactivator-1alpha. Enzyme activities and glutamate-induced oxygen consumption rates in isolated SS and IMF mitochondria were similar between age groups. However, mitochondrial reactive oxygen species (ROS) production during state 3 respiration was approximately 1.7-fold greater in mitochondria isolated from 36-month compared to 6-month animals, and was accompanied by a 1.8-fold increase in the DNA repair enzyme 8-oxoguanine glycosylase 1 in fast-twitch muscle. Basal rates of release of cytochrome c and endonuclease G in SS mitochondria were 3.5- to 7-fold higher from senescent animals. These data suggest that the age-related sarcopenia and muscle fatigability are associated with enhanced ROS production, increased mitochondrial apoptotic susceptibility and reduced transcriptional drive for mitochondrial biogenesis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Human serum metabolic profiles are age dependent

              Understanding the complexity of aging is of utmost importance. This can now be addressed by the novel and powerful approach of metabolomics. However, to date, only a few metabolic studies based on large samples are available. Here, we provide novel and specific information on age-related metabolite concentration changes in human homeostasis. We report results from two population-based studies: the KORA F4 study from Germany as a discovery cohort, with 1038 female and 1124 male participants (32–81 years), and the TwinsUK study as replication, with 724 female participants. Targeted metabolomics of fasting serum samples quantified 131 metabolites by FIA-MS/MS. Among these, 71/34 metabolites were significantly associated with age in women/men (BMI adjusted). We further identified a set of 13 independent metabolites in women (with P values ranging from 4.6 × 10−04 to 7.8 × 10−42, αcorr = 0.004). Eleven of these 13 metabolites were replicated in the TwinsUK study, including seven metabolite concentrations that increased with age (C0, C10:1, C12:1, C18:1, SM C16:1, SM C18:1, and PC aa C28:1), while histidine decreased. These results indicate that metabolic profiles are age dependent and might reflect different aging processes, such as incomplete mitochondrial fatty acid oxidation. The use of metabolomics will increase our understanding of aging networks and may lead to discoveries that help enhance healthy aging.
                Bookmark

                Author and article information

                Contributors
                +1-614-624-6039 , +1-614-624-7270 , sean.garvey@abbott.com
                Journal
                Biogerontology
                Biogerontology
                Biogerontology
                Springer Netherlands (Dordrecht )
                1389-5729
                1573-6768
                21 March 2014
                21 March 2014
                2014
                : 15
                : 217-232
                Affiliations
                [ ]Abbott Nutrition R&D, 3300 Stelzer Road, Bldg RP4-2, Columbus, OH 43219 USA
                [ ]Metabolon, Inc., 617 Davis Drive, Suite 400, Durham, NC 27713 USA
                [ ]Human Cancer Genetics Program, The Ohio State University, 460 West 12th Avenue, BRT910, Columbus, OH 43210 USA
                Article
                9492
                10.1007/s10522-014-9492-5
                4019835
                24652515
                80a0e1fd-5241-4a61-8b30-df8a2ff49d26
                © The Author(s) 2014

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

                History
                : 2 October 2013
                : 11 February 2014
                Categories
                Research Article
                Custom metadata
                © Springer Science+Business Media Dordrecht 2014

                Geriatric medicine
                muscle,aging,metabolomics,sarcopenia,biomarkers,nad
                Geriatric medicine
                muscle, aging, metabolomics, sarcopenia, biomarkers, nad

                Comments

                Comment on this article