42
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Idiopathic pneumonia syndrome after hematopoietic cell transplantation: evidence of occult infectious etiologies

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Newer diagnostic methods may link more idiopathic pneumonia syndrome (IPS) cases to an infectious agent. Bronchoalveolar lavage (BAL) samples from 69 hematopoietic cell transplant (HCT) recipients with IPS diagnosed between 1992 and 2006 were tested for 28 pathogens (3 bacteria and 25 viruses) by quantitative polymerase chain reaction and for Aspergillus by galactomannan assay. Research BALs from 21 asymptomatic HCT patients served as controls. Among 69 HCT patients with IPS, 39 (56.5%) had a pathogen detected. The most frequent pathogens were human herpesvirus-6 (HHV-6) (N = 20 [29%]) followed by human rhinovirus (HRV), cytomegalovirus (CMV), and Aspergillus (N = 8 [12%] in each). HHV-6 and HRV were rarely detected in controls, whereas CMV and Aspergillus were occasionally detected with low pathogen load. Patients with pathogens had worse day-100 survival than those without (hazard ratio, 1.88; P = .03). Mortality in patients with only pathogens of "uncertain" significance in lung was similar to that in patients with pathogens of "established" significance. Metagenomic next-generation sequencing did not reveal additional significant pathogens. Our study demonstrated that approximately half of patients with IPS had pathogens detected in BAL, and pathogen detection was associated with increased mortality. Thus, an expanded infection detection panel can significantly increase the diagnostic precision for idiopathic pneumonia.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia.

          A previously unknown coronavirus was isolated from the sputum of a 60-year-old man who presented with acute pneumonia and subsequent renal failure with a fatal outcome in Saudi Arabia. The virus (called HCoV-EMC) replicated readily in cell culture, producing cytopathic effects of rounding, detachment, and syncytium formation. The virus represents a novel betacoronavirus species. The closest known relatives are bat coronaviruses HKU4 and HKU5. Here, the clinical data, virus isolation, and molecular identification are presented. The clinical picture was remarkably similar to that of the severe acute respiratory syndrome (SARS) outbreak in 2003 and reminds us that animal coronaviruses can cause severe disease in humans.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Viral infection in acute exacerbation of idiopathic pulmonary fibrosis.

            Idiopathic pulmonary fibrosis is a progressive, uniformly fatal interstitial lung disease. An acute exacerbation of idiopathic pulmonary fibrosis is an episode of acute respiratory worsening without an identifiable etiology. Occult viral infection has been proposed as a possible cause of acute exacerbation. To use unbiased genomics-based discovery methods to define the role of viruses in acute exacerbation of idiopathic pulmonary fibrosis. Bronchoalveolar lavage and serum from patients with acute exacerbation of idiopathic pulmonary fibrosis, stable disease, and acute lung injury were tested for viral nucleic acid using multiplex polymerase chain reaction, pan-viral microarray, and high-throughput cDNA sequencing. Four of forty-three patients with acute exacerbation of idiopathic pulmonary fibrosis had evidence of common respiratory viral infection (parainfluenza [n = 1], rhinovirus [n = 2], coronavirus [n = 1]); no viruses were detected in the bronchoalveolar lavage from stable patients. Pan-viral microarrays revealed additional evidence of viral infection (herpes simplex virus [n = 1], Epstein-Barr virus [n = 2], and torque teno virus [TTV] [n = 12]) in patients with acute exacerbation. TTV infection was significantly more common in patients with acute exacerbation than stable controls (P = 0.0003), but present in a similar percentage of acute lung injury controls. Deep sequencing of a subset of acute exacerbation cases confirmed the presence of TTV but did not identify additional viruses. Viral infection was not detected in most cases of acute exacerbation of idiopathic pulmonary fibrosis. TTV was present in a significant minority of cases, and cases of acute lung injury; the clinical significance of this finding remains to be determined.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              A Metagenomic Analysis of Pandemic Influenza A (2009 H1N1) Infection in Patients from North America

              Although metagenomics has been previously employed for pathogen discovery, its cost and complexity have prevented its use as a practical front-line diagnostic for unknown infectious diseases. Here we demonstrate the utility of two metagenomics-based strategies, a pan-viral microarray (Virochip) and deep sequencing, for the identification and characterization of 2009 pandemic H1N1 influenza A virus. Using nasopharyngeal swabs collected during the earliest stages of the pandemic in Mexico, Canada, and the United States (n = 17), the Virochip was able to detect a novel virus most closely related to swine influenza viruses without a priori information. Deep sequencing yielded reads corresponding to 2009 H1N1 influenza in each sample (percentage of aligned sequences corresponding to 2009 H1N1 ranging from 0.0011% to 10.9%), with up to 97% coverage of the influenza genome in one sample. Detection of 2009 H1N1 by deep sequencing was possible even at titers near the limits of detection for specific RT-PCR, and the percentage of sequence reads was linearly correlated with virus titer. Deep sequencing also provided insights into the upper respiratory microbiota and host gene expression in response to 2009 H1N1 infection. An unbiased analysis combining sequence data from all 17 outbreak samples revealed that 90% of the 2009 H1N1 genome could be assembled de novo without the use of any reference sequence, including assembly of several near full-length genomic segments. These results indicate that a streamlined metagenomics detection strategy can potentially replace the multiple conventional diagnostic tests required to investigate an outbreak of a novel pathogen, and provide a blueprint for comprehensive diagnosis of unexplained acute illnesses or outbreaks in clinical and public health settings.
                Bookmark

                Author and article information

                Journal
                Blood
                Blood
                American Society of Hematology
                0006-4971
                1528-0020
                June 11 2015
                April 27 2015
                : 125
                : 24
                : 3789-3797
                Article
                10.1182/blood-2014-12-617035
                4463739
                25918347
                82641b6b-9588-48d3-9890-4039d7655fae
                © 2015
                History

                Comments

                Comment on this article