39
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Comparison of Infant Gut and Skin Microbiota, Resistome and Virulome Between Neonatal Intensive Care Unit (NICU) Environments

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background: There is a growing move to provide care for premature infants in a single family, private room neonatal intensive care unit (NICU) in place of the traditional shared space, open bay NICU. The resultant effect on the developing neonatal microbiota is unknown.

          Study Design: Stool and groin skin swabs were collected from infants in a shared-space NICU (old NICU) and a single-family room NICU (new NICU) on the same hospital campus. Metagenomic sequencing was performed and data analyzed by CosmosID bioinformatics software package.

          Results: There were no significant differences between the cohorts in gestational age, length of stay, and delivery mode; infants in the old NICU received significantly more antibiotics ( p = 0.03). Differentially abundant antimicrobial resistance genes and virulence associated genes were found between the cohorts in stool and skin, with more differentially abundant antimicrobial resistance genes in the new NICU. The entire bacterial microbiota analyzed to the genus level significantly differed between cohorts in skin ( p = 0.0001) but not in stool samples. There was no difference in alpha diversity between the two cohorts. DNA viruses and fungi were detected but did not differ between cohorts.

          Conclusion: Differences were seen in the resistome and virulome between the two cohorts with more differentially abundant antimicrobial resistance genes in the new NICU. This highlights the influence that different NICU environments can have on the neonatal microbiota. Whether the differences were due to the new NICU being a single-family NICU or located in a newly constructed building warrants exploration. Long term health outcomes from the differences observed must be followed longitudinally.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          Gut microbiome, obesity, and metabolic dysfunction.

          The prevalence of obesity and related disorders such as metabolic syndrome has vastly increased throughout the world. Recent insights have generated an entirely new perspective suggesting that our microbiota might be involved in the development of these disorders. Studies have demonstrated that obesity and metabolic syndrome may be associated with profound microbiotal changes, and the induction of a metabolic syndrome phenotype through fecal transplants corroborates the important role of the microbiota in this disease. Dietary composition and caloric intake appear to swiftly regulate intestinal microbial composition and function. As most findings in this field of research are based on mouse studies, the relevance to human biology requires further investigation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Microbes in the neonatal intensive care unit resemble those found in the gut of premature infants

            Background The source inoculum of gastrointestinal tract (GIT) microbes is largely influenced by delivery mode in full-term infants, but these influences may be decoupled in very low birth weight (VLBW, <1,500 g) neonates via conventional broad-spectrum antibiotic treatment. We hypothesize the built environment (BE), specifically room surfaces frequently touched by humans, is a predominant source of colonizing microbes in the gut of premature VLBW infants. Here, we present the first matched fecal-BE time series analysis of two preterm VLBW neonates housed in a neonatal intensive care unit (NICU) over the first month of life. Results Fresh fecal samples were collected every 3 days and metagenomes sequenced on an Illumina HiSeq2000 device. For each fecal sample, approximately 33 swabs were collected from each NICU room from 6 specified areas: sink, feeding and intubation tubing, hands of healthcare providers and parents, general surfaces, and nurse station electronics (keyboard, mouse, and cell phone). Swabs were processed using a recently developed ‘expectation maximization iterative reconstruction of genes from the environment’ (EMIRGE) amplicon pipeline in which full-length 16S rRNA amplicons were sheared and sequenced using an Illumina platform, and short reads reassembled into full-length genes. Over 24,000 full-length 16S rRNA sequences were produced, generating an average of approximately 12,000 operational taxonomic units (OTUs) (clustered at 97% nucleotide identity) per room-infant pair. Dominant gut taxa, including Staphylococcus epidermidis, Klebsiella pneumoniae, Bacteroides fragilis, and Escherichia coli, were widely distributed throughout the room environment with many gut colonizers detected in more than half of samples. Reconstructed genomes from infant gut colonizers revealed a suite of genes that confer resistance to antibiotics (for example, tetracycline, fluoroquinolone, and aminoglycoside) and sterilizing agents, which likely offer a competitive advantage in the NICU environment. Conclusions We have developed a high-throughput culture-independent approach that integrates room surveys based on full-length 16S rRNA gene sequences with metagenomic analysis of fecal samples collected from infants in the room. The approach enabled identification of discrete ICU reservoirs of microbes that also colonized the infant gut and provided evidence for the presence of certain organisms in the room prior to their detection in the gut.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Developmental dynamics of the preterm infant gut microbiota and antibiotic resistome

              Development of the preterm infant gut microbiota is emerging as a critical research priority(1). Since preterm infants almost universally receive early and often extended antibiotic therapy(2), it is important to understand how these interventions alter gut microbiota development(3-6). Analysis of 401 stools from 84 longitudinally sampled preterm infants demonstrates that meropenem, cefotaxime and ticarcillin-clavulanate are associated with significantly reduced species richness. In contrast, vancomycin and gentamicin, the antibiotics most commonly administered to preterm infants, have non-uniform effects on species richness, but these can be predicted with 85% accuracy based on the relative abundance of only two bacterial species and two antibiotic resistance (AR) genes at treatment initiation. To investigate resistome development, we functionally selected resistance to 16 antibiotics from 21 faecal metagenomic expression libraries. Of the 794 AR genes identified, 79% had not previously been classified as AR genes. Combined with deep shotgun sequencing of all stools, we find that multidrug-resistant members of the genera Escherichia, Klebsiella and Enterobacter, genera commonly associated with nosocomial infections, dominate the preterm infant gut microbiota. AR genes that are enriched following specific antibiotic treatments are generally unique to the specific treatment and are highly correlated with the abundance of a single species. The most notable exceptions include ticarcillin-clavulanate and ampicillin, both of which enrich for a large number of overlapping AR genes, and are correlated with Klebsiella pneumoniae. We find that all antibiotic treatments are associated with widespread collateral microbiome impact by enrichment of AR genes that have no known activity against the specific antibiotic driver.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                25 June 2018
                2018
                : 9
                : 1361
                Affiliations
                [1] 1Department of Pediatrics, Inova Children’s Hospital, Falls Church , VA, United States
                [2] 2Inova Translational Medicine Institute, Falls Church , VA, United States
                [3] 3Department of Pediatric Gastroenterology, Pediatric Specialists of Virginia, Fairfax , VA, United States
                [4] 4CosmosID, Rockville , MD, United States
                [5] 5Fairfax Neonatal Associates PC, Falls Church , VA, United States
                Author notes

                Edited by: Rakesh Sharma, Institute of Genomics and Integrative Biology (CSIR), India

                Reviewed by: Amedeo Amedei, Università degli Studi di Firenze, Italy; Mauricio J. Farfan, Universidad de Chile, Chile

                *Correspondence: Suchitra K. Hourigan, suchihourigan@ 123456gmail.com

                This article was submitted to Evolutionary and Genomic Microbiology, a section of the journal Frontiers in Microbiology

                Article
                10.3389/fmicb.2018.01361
                6026636
                29988506
                82b08f92-170c-48e1-b03d-df89cb54cbf0
                Copyright © 2018 Hourigan, Subramanian, Hasan, Ta, Klein, Chettout, Huddleston, Deopujari, Levy, Baveja, Clemency, Baker, Niederhuber and Colwell.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 25 February 2018
                : 05 June 2018
                Page count
                Figures: 6, Tables: 2, Equations: 0, References: 46, Pages: 13, Words: 0
                Categories
                Microbiology
                Original Research

                Microbiology & Virology
                microbiome,microbiota,neonatal,nicu,environment,resistome,virulome
                Microbiology & Virology
                microbiome, microbiota, neonatal, nicu, environment, resistome, virulome

                Comments

                Comment on this article