10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Accurate K-edge X-ray photoelectron and absorption spectra of g-C3N4 nanosheets by first-principles simulations and reinterpretations.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We performed a density functional theory (DFT) study on X-ray photoelectron (XPS) and absorption (XAS) spectra of graphitic carbon nitride (g-C3N4) nanosheets at the N and C K-edges. A combined cluster-periodic approach was employed to calculate XPS spectra, in which the core ionic potential (IP) of the solid 2D material was computed by subtracting the work function (obtained with periodic conditions) from the gas phase IP (obtained with large cluster models). With amino-terminated supermolecules of different sizes, we obtained convergent spectra and provide new assignments for 5 nitrogen [1 sp2; 4 sp3 (bridging, tertiary, and primary/secondary amino nitrogens)] and 4 carbon (all bonded with three nitrogens) local structures. A good agreement with experiments was obtained, with the N1s (C1s) main peak position differing by 0.1-0.2 eV (0.5-0.8 eV). Our simulations show that N1s XPS of pure g-C3N4 contains only two major features at 398.6 and 401.2 eV, contributed from sp2-N and sp3-N, respectively. The chemical shifts of all sp3-N are so close (deviating by 0.3-0.6 eV) that terminal amino groups -NHx (x = 1, 2) will only be distinguished in high-resolution measurements. In C1s XPS, all carbons show similar (deviation < 0.2 eV) IPs, as determined by the same nearest neighbors. We further excluded the effect of shake-up satellites that may change our XPS interpretations by equivalent core hole time-dependent DFT (ECH-TDDFT) simulations. The effect of vibronic coupling is small (redistribution is only 0.1-0.3 eV to the higher-energy region) in the N1s edge as estimated from the asymmetric main peak shape, and negligible in the C1s edge. Quicker size convergence was found in XAS than XPS. In N1s XAS, we identified a weak π* spectral feature at 400-401 eV for both -NHx and tertiary nitrogens. Our study provides a clear theoretical reference for X-ray spectral fingerprints of different local structures, which is useful for analysis of g-C3N4 based materials with various designed or unavoidable structural modifications. We also highlight our combined cluster-periodic approach in calculating the K-edge XPS spectra of general 2D materials which predicts accurate absolute values.

          Related collections

          Author and article information

          Journal
          Phys Chem Chem Phys
          Physical chemistry chemical physics : PCCP
          Royal Society of Chemistry (RSC)
          1463-9084
          1463-9076
          Oct 24 2019
          : 21
          : 41
          Affiliations
          [1 ] Department of Applied Physics, School of Science, Nanjing University of Science and Technology, 210094 Nanjing, China. wjhua@njust.edu.cn.
          Article
          10.1039/c9cp04573b
          31608353
          83077a6e-6177-4982-9693-05428d390c8d
          History

          Comments

          Comment on this article